검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 119

        1.
        2024.04 구독 인증기관·개인회원 무료
        It is well known that invertebrates do not have adaptive immunity because of their short life cycle. Especially, insects have a strong innate immune system, including antimicrobial peptides (AMPs) production, to protect themselves from a wide range of pathogens. Previously, we identified over 60 genes related to AMP production, including Toll and Imd pathways, and characterized their immunological role in response to pathogenic infection through target gene-specific RNAi. This resulted in decreased expression levels of most AMPs in the larvae which were injected with target gene-specific dsRNA and microbes. Currently, we are focusing on studying the regulation of AMP production through epigenesis. It may help us understand how to regulate the innate immune system induced by pathogenic infection.
        2.
        2023.10 구독 인증기관·개인회원 무료
        In this study, Bacillus velesensis TJS119, isolated from freshwater, demonstrated growth inhibition against insect pathogenic fungi. The culture medium of the B. velezensis TJS119 strain underwent sequential fractionation with n-hexane, chloroform, ethyl acetate, n-butanol, and water. Notably, the n-butanol fraction exhibited significant antifungal activity against Metarhizium anisopliae and Beauveria bassiana. LC/MS analysis of antifungal peaks identified the production of various lipopeptides by B. velezensis TJS119, including two types of iturin A (C14, C15), four types of fengycin A (C14, C15, C16, C17), and two types of fengycin B (C16, C17). The antifungal efficacy of Iturin A and Fengycin against insect pathogenic fungi was further validated using the paper disc diffusion method. These findings underscore the potential of B. velezensis TJS119 as a promising candidate for future research and applications in the realm of agricultural biological controls against fungal diseases.
        3.
        2023.10 구독 인증기관·개인회원 무료
        The ladybird beetles have been used as biological control agents against several pest species. The aim of this study is to evaluate the compatibility between ladybird beetles and an entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin AAD16. The virulence of AAD16 strain was compared with that of commercial GHA strain on three developmental stages of two coccinellids; Harmonia axyridis Pallas and Chilocorus stigma Say. The topical application method was used for both adult and larval stage while dipping method was used for egg stage. The LT50 and mycosis rate for all life stages of two ladybird beetles tested were not significant between AAD16 and GHA strain. In larval stage, the mycosis rates of H. axyridis and C. stigma were 36 and 40% and 63 and 60% in AAD16 and GHA strain. In adult stage, the mycosis rates of H. axyridis (male and female) and C. stigma (unsexed) were 20, 23, and 23% and 26, 30, and 30% in AAD16 and GHA strain, respectively. Therefore, the two predatory coccinellids could be compatible with these two fungus strains due to their relatively lower mycosis rate.
        5.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 인체 및 온혈 동물의 기회감염 병원세균으로 알려진 Pseudomonas oryzihabitans에 의한 양파 구에 발생한 중심 흑화병의 첫 보고이다. 본 연구의 목적은 양파 구 흑화병을 일으키는 원인 병원체를 분리 및 동정하고 미생물학적 특성을 조사하는데 있다. 2021년 국내 양파 구에서 소비자 혐오감을 유발할 수 있는 세균 흑화병이 관찰되었다. 흑갈색 색소가 침착된 조직과 흑색 색소 과육 조직에서 그람음성, 비포자형성, 막대형 pseudomonad들이 분리되었다. 병원성 검정을 통해 형성된 인공 감염후 발생한 증상은 자연 감염과 같았고 멸균 증류수를 처리한 음성 대조구에서는 흑화병이 발견되지 않았다. 병원성 검정, API (analytical profile index) 시험, MALDI-TOF MS (Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry), 16S rRNA 유전자 영역 염기서열분석 및 유전적 유연관계분석을 통해 원인 병원체를 Pseudomonas oryzihabitans로 동정하였다. 대규모 포장 또는 수확후병으로 인한 양파 피해사례가 보고된 적은 없지만, 본 연구에서 얻은 결과는 P. oryzihabitans가 잠재적으로 양파의 글로벌 생산 및 운송과 식품 안전을 위협할 수 있음을 시사한다. 또한 인체 기회감염 병원체이기 때문에 양파로부터 언제든지 인체로 감염될 수 있는 위험성을 갖고 있다고 볼 수 있다.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Some plant pathogenic bacteria species are environmentally high-risk organisms that have a negative impact on agricultural production. Experiments with these pathogens in a biosafety laboratory require safety protocols to prevent contamination from these pathogens. In this work, we investigated the efficacy of using UV-C irradiation for the purpose of sterilizing an important plant pathogenic bacterium, Erwinia pyrifoliae, in a laboratory setting. For the test, the pathogen (1.71 × 108 CFU/ml) was inoculated on the surface of Potato Dextrose Agar (PDA) and the inoculated media were placed on a work surface in a biosafety cabinet (Class 2 Type A1) as well as on three different surfaces located within the laboratory: a laboratory bench, a laboratory bench shelf, and the floor. All the surfaces where the media were placed were in range of the UV-C beam projected by the UV lamp installed in the ceiling of the BSL 2 Class biosafety laboratory. Measurements of the reduction rate of bacteria under UV-C irradiation were conducted at different time intervals: after 10 minutes, 30 minutes, 1 hour, 2 hours, and 3 hours, respectively. The reduction rate of bacteria ranged from 90% to 99% after 10min irradiation, from 97.8% to 100% after 30 minutes of irradiation, from 99.1% to 100% after 1 hour of irradiation, and from 99.99% to 100% after 2 hours of irradiation. After 3 hours of irradiation, the pathogen was completely killed in all the test conditions. In the cases of the laboratory bench and the shelf of the laboratory bench, the effectiveness of UV-C irradiation differed slightly between the site where the bacteria located vertically under the lamp and the site where the bacteria were located 1 meter away horizontally from the site under of the lamp.
        4,000원
        9.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-risk microbial pathogens are handled in a biosafety laboratory. After experiments, the pathogens may remain as contaminants. To safely manage a biosafety laboratory, disinfection of microbial contaminants is necessary. This study was carried out to evaluate the effect of UV-C irradiation for the disinfection of a high-risk plant pathogenic bacterium Erwinia amylovora in a laboratory setting. For the test, the bacterium (8.7 × 106 CFU/ml) was embedded on the surface of PDA and placed on the work surface in a biosafety cabinet (Class 2 Type A1), and on the three different surfaces of the laboratory bench, laboratory bench shelf, and the floor which were positioned in a straight line from the UV lamp installed in the ceiling of the biosafety laboratory (BSL 2 class). UV-C irradiation was administered for 10min, 30min, 1 hr, 2hr, 3 hr, and 4hr, respectively. The reduction rate of bacteria ranged from 95% to 99% in regard to 10 min irradiation, from 97% to 99% in regard to 30 min irradiation, from 99.8% to 99.9% in regard to 1 hr irradiation, and higher than 99.99% in regard to 2 hr irradiation. The bacterium was completely inactivated after 3 hr irradiation. A similar UV-C irradiation effect was obtained when the bacterium was placed at a distance of 1 m from the three different surface points. Bacterial reduction by UV-C irradiation was not significantly different among the three different surface points.
        4,000원
        10.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to obtain basic information for the use of the ATP fluorescence detection method in consideration of the most common and frequent contamination situation that occurs in laboratories dealing with fire blight causing bacterium, Erwinia amylovora. ATP luminescence measurements (Relative Light Unit, RLU) were tested against these pathogen cells (CFU/cm2) which were artificially introduced on the disinfected surface of a bench floor of a biosafety cabinet (Class 2 Type A1), on a part of the disinfected surface of a lab experimental bench, on a part of the disinfected floor, and on a part of the disinfected floor of an acryl chamber for bioaerosol studies in a biosafety laboratory (BSL 2 class) using two different ATP bioluminometers. RLU values were not much increased with the bacterial cells from 2.15 × 102/cm2 to 2.15 × 106/cm2. RLU values varied among the four different surfaces tested. RLU values measured from the same number of bacterial cells differed little between the two different ATP bioluminometers used for this study. RLU values obtained from bacterial cells higher than 2.15 × 107/cm2 indicated the presence of bacterial contamination on the four different surfaces tested. The R2 values obtained based on the correlation data for the RLU values in response to different E. amylovora cell numbers (CFU/ cm2) on the surfaces of the four test spots ranged from 0.9827 to 0.9999.
        4,300원
        11.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Expression changes of stress-induced peroxidase (swpa2 and swpa4) and storage root-specific sporamin (spo-A and spo-B) genes were examined using qRT-PCR after treatment with wounding and bacterial pathogens on leaves of sweetpotato (Ipomoea batatas) plants. As a result of examining the expression change in the wounding treatment condition for 48 hours after treatment, which is a representative physical stress, the expression of all genes increased after 12 hours of wounding treatment, but the expression pattern of each gene group showed distinct differences thereafter. Expression levels of swpa2 and swpa4 strongly increased up to 36 or 48 hours after wounding treatment, whereas spo-A and spo-B expression levels strongly decreased after 24 or 36 hours after wounding treatment. Peroxidase and sporamin genes are involved in the early response after wounding treatment and, in particular, the peroxidase swpa2 and swpa4 genes are also involved in the late response after wounding treatment. Gene expression analysis after infection with P. chrysanthemi, which causes softness in sweetpotato, showed that the swpa2 and swpa4 genes were weakly induced after 8 hours and then strongly induced after 20 hours during pathogen infection. Expression of the spo-A gene was weakly induced in the pathogen-treated group after 20 hours, whereas spo-B showed an expression pattern similar to that of the peroxidase genes. The above results indicate that expression of the stress-induced peroxidase gene used in this study is induced not only by abiotic stress but also by biological stress caused by bacterial pathogen invasion and that peroxidase plays an important function in the initial defense response.
        4,000원
        12.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porphyromonas gingivalis, a major pathogen of chronic periodontitis, colonizes in subgingival crevice and affects surrounding oral tissues, especially in periodontitis patients. Oral cancer mainly occurs in old-aged persons, and are exposed to the P. gingivalis, released from periodontitis, one of the most common inflammatory disease of oral cavity. Thus oral cancer cells may be infected with P. gingivalis, and its biologic behavior are autologously and/or heterogeneously modulated by altering gene expression. Exosomes which are derived from cells contain not only coding genes but also non-coding RNAs such as long non-coding RNAs, miRNA, and piRNAs. Here, to investigate the effect of P. gingivalis on oral cancer cells and to gain insight into the crosstalk between inflammatory signal from tumor microenvironment and oral cancer, we observed miRNA profiles of exosomes from P. gingivalis–infected oral cancer cells. Upregulation of 6 miRNAs, miR-203-3p, miR-6516-3p, miR-483-5p, miR-1275, miR-8485, and miR-19a-3p, were observed whereas 14 miRNAs including let-7a-3p, miR-106a-5p were downregulated. In addition, KEGG pathway analysis using the upregulated- and downregulated- miRNAs showed association with cell adhesion molecules pathway and ECM-receptor interaction pathway, respectively. These findings suggest that P. gingivalis could modulate biologic behavior of oral cancer cells through changes of exosomal miRNAs.
        4,000원
        16.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        양파 종자는 양파 생산을 위한 기초적 투입자원이기 때문에 건전한 종자는 양파 생산에서 매우 중요하다. 양파 종자에서 분리한 박테리아 중에서 양파 종자 발아를 억제하는 균주 OS1을 분리하였다. 분자 동정을 위해 16S rRNA 유전자 영역의 DNA를 분석하였고 이를 바탕으로 한 유연관계 분석을 통해 OS1 균주를 Leclercia adecarboxylata로 동정하였다. L. adecarboxylata는 면역 저하 환자 또는 기저 질환이 있는 환자에게 기회감염을 일으키는 것으로 알려져 있다. L. adecarboxylata OS1은 휘발 물질을 생산하고 이 휘발 물질이 양파 종자 발아를 억제하는 것으로 분석하였다. 특히, 양파 구근을 이용한 병원성 검정에서도 L. adecarboxylata OS1는 갈변증상과 썩음증상을 유발하였다. 아직 L. adecarboxylata에 의한 대규모 포장 또는 수확후병으로 인한 양파 피해사례가 보고된 적은 없지만, 이러한 결과는 L. adecarboxylata는 잠재적인 양파 병원체가 될 수 있음을 시사하고 양파 생산에 잠재적 위협 요소가 될 가능성을 보여준다. 또한, L. adecarboxylata는 인체 기회감염 병원체이기 때문에 양파로부터 언제든지 인체로 감염될 수 있는 위험성을 갖고 있다고 볼 수 있다.
        4,000원
        17.
        2022.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This mini-review focused on the current advances in the development and the application of the antibacterial agents produced from probiotics strains against foodborne pathogens. Inhibitory activity of the pathogen growth could be achieved by co-culture with probiotics and/or the treatment of metabolites extracted from probiotics culture, whereas strain-dependent efficacy was mainly reported according to the bacterial species of the target pathogens. To overcome the limited antibacterial spectrum and the efficacy of the metabolites from probiotics, the recent research highlight the discovery of novel bioactive substances with broad range of the inhibitory activity of foodborne pathogens and mode-of-action which has not been reported as the major research goal. Moreover, understanding the distribution of functional and regulation genes coding the production of the antibacterial metabolites based on the bacterial genome analysis can provide the clues for the mechanisms of the pathogen control by using probiotics. Major strategies on the application of the genomics in this research area can be represented as follows: 1) functional annotation specialized for antimicrobial proteins, 2) assessment of the antibacterial effects followed by the general/functional annotation, 3) genome and metabolites analysis for the purification of antimicrobial proteins, 4) comparative genomics and the characterization of antimicrobial potential. Especially the relationship between phenotype-genotype based on genomic bioinformation with the results of the practical efficacy tests of bacterial metabolites as an active substance of disinfectants and/or preservatives can be expected to act as supportive research for broadening our knowledge regarding the key metabolic pathways associated with the production of antibacterials from probiotics.
        4,900원
        18.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 로메인 상추에서 병원성미생물이 생존과 생육의 특성을 분석하여 안전관리 정보를 확보하고자 실시하였다. 로메인 상추에서 분무 접종한 E. coli O157:H7은 72시간 배양 후 초기균수 보다 2.0 log CFU/g 수준으로 증가하여 생존 및 증식이 가능한 것으로 판단되었다. 상추 잎의 상처 유무에 따른 E. coli O157:H7은 배양 72시 간 후 유의적 차이가 없었다. 상추 잎에 인위적인 상처에 내어 E. coli O157:H7을 접종하고 병원균의 분포를 조사한 결과 상처가 없는 상추는 표면이 매끄러워 균이 부착하지 못하거나 균수가 매우 낮았고, 상처가 있는 상추 잎은 거친 표면에 균이 밀집되어 상처를 통해 상추 내부로 침입하는 것으로 판단되었다. 병원성미생물의 상추 추출물 이용 여부는 10-100% 농도에서 배양 24시간 이후에 E. coli O157:H7 8.9 log CFU/mL, L. monocytogenes 8.6 log CFU/mL, P. carotovorum 8.8 log CFU/mL로 나타났다. 이는 병원성미생물과 식물병원균이 유사한 4 log CFU/g 이상의 증가율을 나 타내어 미생물이 상추 추출물을 영양원으로 사용할 수 있는 것으로 판단되었다. 상추 추출물 0.1%에서 초기 접종 농 도와 비교하여 E. coli O157:H7 2.7, L. monocytogenes 1.3, P. carotovorum 2.9 log CFU/mL 수준으로 증가하였다. 이에 따라 병원성 미생물의 최소생육농도는 0.1%보다 낮은 것으로 판단되었고, 상처를 통해 지속적으로 0.1% 수준의 상추 추출물이 병원성미생물에 제공되면 상추 내부에서도 생존 및 증식이 가능할 것으로 확인하였다.
        4,000원
        20.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Strawberry is one of the major economic crops in the modern agriculture industry worldwide. Fusarium wilt disease, caused by the Fusarium oxysporum f. sp. fragariae (FOF), is known as the most problematic factor in strawberry production. In a previous study, Streptomyces griseus S4-7 was isolated from the strawberry rhizosphere, exhibited an exceptional antifungal activity against the Fusarium wilt pathogen. However, sensitivity variation to S4-7 in the pathogen population was not evaluated. Therefore, we collected the pathogen nationwide and screened the sensitivity of FOF to the biological agent. A total of 96 FOF isolates was tested their sensitivity to the S4-7 and less-sensitive FOF isolates had lower cell wall degradation than the standard FOF strain. However, gene expression level of the cell wall organization (pkc1, gcn5) was not different between the less sensitive and the standard FOF strains. The results suggested that among the FOF population, some isolates may develop tolerance against a biocontrol agent through complex tolerance mechanisms.
        4,000원
        1 2 3 4 5