Waste oyster shells create several serious problems; however, only some parts of them are being utilized currently. The ideal solution would be to convert the waste shells into a product that is both environmentally beneficial and economically viable. An experimental study is carried out to investigate the recycling possibilities for oyster shell waste. Bulk ceramic bodies are produced from the oyster shell powder in three sequential processes. First, the shell powder is calcined to form calcium oxide CaO, which is then slaked by a slaking reaction with water to produce calcium hydroxide Ca(OH)2. Then, calcium hydroxide powder is formed by uniaxial pressing. Finally, the calcium hydroxide compact is reconverted to calcium carbonate via a carbonation reaction with carbon dioxide released from the shell powder bed during firing at 550oC. The bulk body obtained from waste oyster shells could be utilized as a marine structural porous material.
The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.
This article presents the successful consolidation of the mixed Co and Diamond powders for a drilling segment by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were analyzed. Homogeneous hardness (Hv 220) and density (97%) of sintered bulks fabricated by MPC were obtained by the new technique, where higher pressure has been employed for short period of time than that of general process. A fine microstructure and homogeneous hardness in the consolidated bulk were observed without cracks. Relatively higher drilling speed of 9.61 cm/min and life time of 6.55 m were found to the MPCed specimens, whereas the value of the specimens fabricated by general process was 11.71 cm/min and 7.96 m, respectively. A substantial improvement of mechanical properties of segment was achieved through this study.
The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of , and phase. The semiconducting phase of was transformed from phase by annealing
In the present study, Zr-base metallic glass (MG) and Zr-base BMG/diamond composites were fabricated using a combination of gas atomization and spark plasma sintering (SPS). The microstructure, thermal stability and mechanical property of both the specimens as atomized and sintered were investigated. The experimental results showed that the SPSed specimens could be densified into nearly 100% and maintained the initial thermal stability at the sintering temperature of 630K. In addition, MG/diamond powder composites were successfully synthesised using SPS process. The composites, even a very low diamond volume fraction, generated a significant increase in compressive strength. With increasing the diamond volume fraction, the compressive strength was also increased due to the addition of hardest diamonds. It suggests that these composites would be potential candidates for a new cutting tool material.
Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and , respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.
Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.
Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.
alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.
The microstructure of the extruded Al-20Si bars showed a homogeneous distribution of eutectic Si and primary Si particles embedded in the Al matrix. The grain size of α-Al varied from 150 to 600 nm and the size of the eutectic Si and primary Si in the extruded bars was about 100 - 200 nm. The room temperature tensile strength of the alloy with a powder size <26μm was 322 MPa, while for the coarser powder (45-106μm) it was 230 MPa. With decreasing powder size from 45-106μm to <26μm, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The fracture mechanism of failure in tension testing and wear testing was also studied.
Mg55Y15Cu30 metallic glass powders were prepared by the mechanical alloying of pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these Mg55Y15Cu30 amorphous powders was investigated using the differential scanning calorimeter (DSC). Tg ,Tx , and ΔTx are 442 K, 478 K, and 36 K, respectively. The as-milled Mg55Y15Cu30 powders were then consolidated by vacuum hot pressing into disk compacts with a diameter and thickness of 10 mm and 1 mm, respectively. This yielded bulk Mg55Y15Cu30 metallic glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy matrix. The pressure applied during consolidation can enhance thermal stability and prolong the existence of amorphous phase within Mg55Y15Cu30 powders.
The property and performance of the nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. powder mixtures were prepared by wet ball milling and hydrogen reduction of and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.