유기용매와 초임계유체를 사용하여 대두분말에서 지방성분을 추출하는 공정에서 분말화공정(분쇄)의 시간의 변화에 따른 입자도와 초고압처리에 의한 추출속도를 측정하였다. 대두분말의 입자가 작을수록 추출속도가 향상되었으면 이는 입자의 크기가 작아짐에 따라 전체적인 표면적이 증가하여 고-액추출에서 중요한 반응기작인 물질전달속도를 증가시켰기 때문이라 판단된다. 초고압공정을 적용 시 동일한 입자크기에서 추출속도가 현저히 향상되었으며 이는 대두분말 내부에서 발생하는 확산현상에 대한 저항이 초고압상태에서의 변화로 감소되었기 때문이라 사료된다. 초임계유출에 의한 추출은 수율이 낮은 단점이 있으나 입자의 크기가 큰 상태에서는 초고압처리를 전처리로 사용할 경우 시간당 추출량을 상당부분 증가시킬 수 있음을 보여주었으나, 입자크기가 작을 경우 초고압처리가 영향을 미치지 못함을 보여주었다.
This study was designed to evaluate antioxidant activity of Curcuma longa L. leaves treated by ultra highpressure extraction. Curcuma longa L. leaves was subjected to 5,000 bar for 5 and 15 min at 25℃ The highest phenolics andflavonoids content was observed in the treatment of high pressure extraction for 15 min (308.28㎍/㎎, 124.33㎍/㎎). TheDPPH scavenging activity was 82.34% at 1.0㎎/㎖ of Curcuma longa L. leaves treated by ultra high pressure process for 15min. The highest SOD-like acitivity of Curcuma longa L. leaves (1.0㎎/㎖) was observed at ultra high pressure extractionfor 15 min (67.54%). The high pressure extraction significantly increased the contents of phenolics and flavonoids and alsoenhanced the antioxidant activity. These results provide useful information for enhancing biological properties of Curcumalonga L. leaves.
This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at 90℃ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[α]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.
This study was performed to investigate the enhancement of cosmeceutical activities of Berberis koreana bark by different extraction processes. The extracts are WE (water extract at 100℃, control), USE (ultrasonification for 1 hours at 60℃ with water), HPE (high pressure for 5 minutes at 60℃ with water) and USE + HPE (ultrasonification process for 1 hours after high pressure for 5 minutes at 60℃ with water), respectively. The cytotoxicity of the extracts was in the range of 24.02~26.94% at 1.0 mg/ml concentration. The USE + HPE showed the lowest cytotoxicity. Compared to the WE, total phenolic and flavonoid contents in the USE + HPE increased to 121.5% and 154.2%. The USE + HPE showed the highest activity at 1.0 mg/ml concentration in 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging, inhibition activity of xanthine oxidase and superoxide dismutase (SOD)-like test, respectively. Tyrosinase inhibition of WE, USE, HPE and USE + HPE at 1.0 mg/ml concentration was measured as 17.72, 19.62, 22.83 and 24.16%, respectively. Hyaluronidase inhibition activities of the USE + HPE were higher than 20.8%~29.5% of the WE. Our results suggested that the extracts from ultrasonification process after high pressure extraction has relatively high cosmeceutical activities, and that the bark of Berberis koreana could be considered as a candidate of new functional cosmetic agents.
The objectives of this study were to compare the antioxidant activities by high pressure extraction of Codonopsis lanceolata from different cultivation areas; Hoeng-sung, Jeju island, and China. Total phenolic acid contents of Hoeng-sung, Jeju, China were estimated as 732.11, 640.25, and 584.85 mg QUR/100 g DW, respectively. The flavonoids contents of Hoeng-sung, Jeju, China were measured as 80.37, 76.46, and 74.55 mg QUR/100g DW, respectively. Generally, contents of phenolic acid and flavonoids, HPE was higher than conventional extraction process. Hoeng-sung Codonopsis lanceolata showed 64.33% of DPPH radical scavenging activity (EDA, %) in 3.2 mg/ml of Hoeng-sung Codonopsis lanceolata. The reducing power of Hoeng-sung cultivation area Codonopsis lanceolata also showed the high activity as 3.15. In generally, antioxidant activities of Codonopsis lanceolata were increased by high pressure extraction process. Based on these results, higher contents of flavonoids and total polyphenols were found extracted by high pressure extraction of Codonopsis lanceolata grow in Hoeng-sung area than others.
We investigated a method to improve anticancer activities of Acer mono wood extracts by ultra high pressure extraction process. The A. mono was extracted by water at 40℃ and 300 MPa for 15 min (High Pressure Extraction, HPE). The extraction yield by ultra high pressure extraction process was 5.42%. The cytotoxicity on human normal lung cell (HEL299) of the extracts from HPE showed 21.54% lower than that from conventional water extraction at 100℃ in adding the maximum concentration of 1.0 mg/ml. Ultra high pressure extracts process for 15 minutes extracts (HPE15) showed more potent scavenging effect than the control, BHA. On SOD-like test, the HPE15 showed highest activity as 32.4% at 1.0 mg/ml concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 67~79%, in adding 1.0 mg/ml of extracts from HPE. HPE was 20~25% higher than conventional water extraction. It was interesting that, among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 75~79%. On in vivo experiment using ICR mice, the variation of body weight of mice group treated A. mono wood extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The survival times of group treated this extracts was 61.96% longer than that of the control group and this extracts showed the lower tumor weight, which were 10.49 g than positive control as 16.17 g. Based on these results, we could tell that the HPE wood extracts of A. mono had higher anticancer activity than conventional water extraction. The results of HPE showed obvious advantages in higher efficiency, shorter extraction time, at lower energy costs.
Hepatoprotective and antioxidant activities of Acer mono and A. okamotoanum were compared after beingextracted by low temperature and high pressure (LTHP) at 20 MPa and 60℃ for 15 minutes. Extraction yield of both A.mono and A. okamotoanum was increased about 40~43% by this extraction process. On scavenging activities, the bark of A.okamotoanum from this extraction process showed the highest activity as about 97%. This value was higher than that fromconventional water extraction and A. mono extracts. Both of A. mono and A. okamotoanum showed high ability on nitritescavenging, but decreasing tendency according to increasing of pH. On SOD-like test, A. okamotoanum had the highestactivity as 46.28% at 1.0㎎/㎖ concentration. A. okamotoanum extracted by LTHP also showed the highest activity as197.38% in adding 1.0㎎/㎖ concentration. Generally, the extracts from low temperature and high pressure extraction pro-cess are higher hepatoprotective and antioxidant activities than that from conventional water extraction. It can concludethat the bark of A. okamotoanum has better biological activities than other parts of A. mo
The low quality fresh ginseng was extracted by water at 80℃ and 240bar for 20min (HPE, High pressureextraction process). The cytotoxicity on human normal kidney cell (HEK293) and human normal lung cell (HEL299) of theextracts from HPE showed 28.43% and 21.78% lower than that from conventional water extraction at 100℃ in adding themaximum concentration of 1.0㎎/㎖. The human breast carcinoma cell and lung adenocarcinoma cell growth were inhib-ited up to about 86%, in adding 1.0㎎/㎖ of extracts from HPE. This values were 9-12% higher than those from conven-tional water extraction. On in vivo experiment using ICR mice, the variation of body weight of mice group treated freshginseng extracts from HPE of 100㎎/㎏/day concentration was very lower than control and other group. The extracts fromHPE was showed longer survival times as 35.65% than that of the control group, and showed the highest tumor inhibitionactivities compared with other group, which were 70.64% on Sarcoma-180 solid tumor cells. On the high performance liq-uid chromatogram (HPLC), amount of ginsenoside-Rg2, Rg3, Rh1 and Rh2 on fresh ginseng were increased up to 43-183%by HPE, compared with conventional water extracts. These data indicate that HPE definitely plays an important role ineffectively extracting ginsenoside, which could result in improving anticancer activities. It can be concluded that low qualityfresh ginseng associated with this process has more biologically compound and better anticancer activities than that fromnormal extraction process.
This study was performed to enhance anticancer activities of E. sinica, and A. gigas by ultra high pressure extraction process. The cytotoxicity of E. sinica and A. gigas on human kidney cell (HEK293) was as low as 24.94% and 25.3% in adding 1.0 mg/ml of the sample extracted at 500 Mpa for 15 minute. Generally, the inhibition of cancer cell growth on A549 and MCF-7 was increased over 20% in the ultra high pressure samples, compared to the conventional extraction process. Under the extracts from ultra high pressure process showed not only the strongest anticancer activities, but also had better stability than normal extracts. It was also found that the extracts of A. gigas reduced the hypertrophy of the internal organs, such as adrenal and spleen caused stresses in several mouse models.
본 연구에서는 초고압 추출 공정의 활성 증진 효과를 알아보기 위해 당귀의 자외선 차단 효과 및 피부 미백활성 실험을 실시하였다. 인간의 섬유아세포인 CCD-986sk를 이용한 세포독성 실험에서 1.0mg/ml 농도의 시료 첨가를 통해 초음파 병행 60℃ 추출물이 21.27%로 가장 낮은 세포독성을 나타내었으며, 15분간 초고압 처리한 60℃초음파 병행 추출물이 23.49%로 가장 높은 세포독성을 나타내었다. UVA 처리에 따른 MMP-1 발현 저해 효과 측정에서 1.0mg/ml 첨가를 통해 15분간 초고압 처리한 60℃ 초음파 추출물이 UV를 조사하지 않은 대조군과 비교하여 122.2%를 나타내며 양성대조군인 ascorbic acid의 121.3%와 근사한 수치의 발현 억제 효과를나타내었다. 그 외 다른 시료들도 134.5% 이하로 발현하며 높은 저해율을 나타냄에 따라 당귀가 UVA에 대한 MMP-1 발현 저해 효과가 있음을 나타내었다. Tyrosinase 억제효과에서는 양성대조군인 ascorbic acid가 1.0mg/ml의 농도에서 70.8%로 가장 높은 저해율을 나타내었다. 당귀 시료 중에서는 초고압을 15분간 처리한 60℃ 초음파 추출물이 ascorbic acid에 근사한 수치인 69.4%로 가장 높은 저해율을 나타내었고, 그외의 시료들도 모두 55% 이상의 높은 저해율을 나타내었다. 시료 첨가를 통한 Clone M-3 세포주의 melanin 생성 억제실험에서 1.0mg/ml 농도 첨가를 통해 15분간 초고압 처리한 60℃ 초음파 추출물이 82.4%를 나타내어 양성대조군인 ascorbic acid에 비해 더 높은 활성을 나타내었다. 이상의 결과를 통하여 당귀가 자외선 차단 및 피부 미백 관련 향장 소재로의 활용 가능성이 있으며, 초고압 처리를 통해 향장활성의 증가가 가능함을 확인하였다.
감귤과피(0.1, 0.5, 1, 2, 4 및 6%)를 함유하는 사과식초, 현미식초 및 감식초의 상온(2) 및 가열(10)에 따른 hesperidin과 naringin의 추출량을 조사함과 동시에 선태성 고혈압 쥐의 혈압에 미치는 영향을 조사하였다. 상온 및 가열추출의 경우 hesperidin과 naringin의 함량은 사고식초에 비하여 현미 및 감식초에서 높은 함량을 나타내었다. 상온추출 1일에서 hesperidin과 naringin의 추출이 완료