검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The number of snowfall and the amount of snowfall are gradually increasing, and due to the characteristics of Seoul, which has a lot of traffic, it is difficult to respond quickly with a snow removal method that relies on snow removal vehicles. Therefore, it is necessary to develop an IoT based eco-friendly snow removal system that can respond to unexpected heavy snow in winter. In this study, the low temperature operation and snow removal performance of the IoT road condition snow removal detector and the snow removal system using CNT and PCM are evaluated in the climatic environment chamber. METHODS : To make artificial snow, it consists of an climatic environment chamber that can simulate a low temperature environment and equipment that can supply compressed air and cold water. Depending on the usage characteristics of the climatic environment chamber, use an air-water type snow maker. In order to make artificial snow, wet temperature, which takes into account the actual air temperature and the amount of moisture in the air, acts as the most important variable and is suitable for making snow, below –1.5 ℃. The lower the water temperature, the easier it is to freeze, so the water source was continuously supplied at 0 ℃ to 4 ℃. One of the two different pipes is connected to the water tank to supply water, and the other pipe is connected to the compressor to supply high-pressure air. Water is dispersed by compressed air in the form of many small droplets. The sprayed microscopic water particles freeze quickly in the low temperature environmental climatic chamber air and naturally fall to the floor, forming snow. Based on the KS C IEC 60068-2-1 cold resistance test standard, an integrated environmental test procedure was prepared to apply to IoT-based snow removal systems and performance evaluation was performed accordingly. The IoT based eco-friendly snow removal system is needed to in winter, so visual check and inspect the operation at the climatic chamber before setting up it to the actual site. In addition, grid type equipment was manufactured for consistent and reliable snow removal performance evaluation under controlled environmental conditions. RESULTS : The IoT-based eco-friendly snow removal system normally carried out the task of acquiring data and images without damaging the appearance or freezing in a low temperature environment. It showed clear snow removal performance in areas where PCM and CNT heating technology were applied to the concrete slab. This experiment shows that normal snow removal tasks can be carried out in low temperature environments in winter. CONCLUSIONS : The integrated environmental test procedures and grid type evaluation equipment are applied to low temperature operation and snow removal performance evaluation of snow removal systems. In the climatic environment chamber, where low temperature environments can be simulated, artificial snow is created regardless of the season to derive quantitative experimental results on snow removal performance. PCM and CNT heating technology showed high snow removal performance. The system is expected to be applied to road site situations to preemptively respond to unexpected heavy snow in winter.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Combat-armored vehicles were equipped with an automatic-fire-extinguishing system to ensure the safety of the crew and vehicle from fires on the vehicle. When a fire was occurred, the automatic-fire-extinguishing system automatically detects the fire through sensors and detection lines, sprays a fire extinguisher, and notifies the crew visually and audibly. Recently, there had been cases of automatic-fire-extinguishing systems malfunction on combat-armored vehicles. In this study, in order to resolve the automatic-fire-extinguisher's malfunction phenomenon, ground noise and inter-circuit noise generated from the fire detection line were identified, and the resistance connected on the circuit was revised to remove noise. As a result of resistance revision, the noises was eliminated and the electromotive force difference between input circuits was made constant, thereby improving the malfunction of the automatic-fire-extinguishing system. By applying the result, it was confirmed that the control device sensed a temperature similar to the actual temperature on actual vehicles, and it was confirmed that the automatic-fire-extinguishing system's malfunction phenomenon was not founded in the field vehicles after then.
        4,000원
        4.
        2023.05 구독 인증기관·개인회원 무료
        It is reported that 48 pressurized heavy water reactors (PHWRs) are in operation, and 10 PHWRs including Wolsong-1 NPP have been permanently shut down in the world. In the case of PHWRs, which have been permanently ceased, they are managed through the delayed decommissioning method, but there are no cases of dismantling. Therefore, technology development is urgent for the effective decommissioning of PHWRs. Unlike PWRs, PHWRs are separated into coolant system and moderator system. Most of pipes and systems of coolant system are mainly composed of carbon steel, expect of the steam generator tubes which are composed of nickel alloy. On the other hand, the moderator system is composed of stainless steel. In the case of stainless steel, the inner layer of the oxide film is composed of chromium oxide, and the outer layer is composed of iron and nickel oxide in enriched. To remove two oxide layers, it is needs to different decontamination method, the coolant system can perform the system decontamination process through a reduction process, but in the case of the moderator system, the oxidation/reduction process is required because it has a material and oxide film similar to PWRs. In this study, this is evaluated the oxide film removal rate according to the type of stainless steel and temperature in order to remove the oxide film deposited in the moderator system. The experiments were carried out at temperatures of 60, 70, 80 and 90°C, with a concentration of 200 ppm of permanganic acid and nitric acid, and 2,000 ppm of oxalic acid, respectively. The results of the oxide film removal rate test for SUS304 showed 29% at 60°C, 38% at 70 and 80°C, and 41% at 90°C. For SUS403, the oxide film removal rate experiment results showed 62% at 60°C, 85% at 70°C, 94% at 80°C, over 99% at 90°C. The results showed that the removal efficiency of the oxide film increased as the temperature increased. Following the results of experimental, the optimum temperature of oxide removal in composed of the stainless steel material is to be 90°C for decontamination of PHWR.
        5.
        2023.05 구독 인증기관·개인회원 무료
        Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
        6.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paint removal of fighter jets is just as important as the painting, because perfect paint removal ensures the quality of the exterior painting on the aircraft. However, the current conditions for paint removal work of the ROKAF’s are poor. It is identified that the painting process currently implemented by the ROKAF is not only exposed to harmful compounds such as harmful dust and hexavalent chromium, but also consumes a lot of water. Thus, the introduction of advanced facility is considered. This study compares the fighter jets painting removal process currently applied by the Korean Air Force with the improved laser coating removal process of the US Air Force, and conducts an incremental analysis to perform economic analysis for the introduction of advanced facility. Four scenarios were envisioned on the premise of an increase in the number of fighters in the future, incremental analysis shows that laser coating removal method is advantageous in all scenarios. In addition, it is recommended that paint removal cycle keeps the current 12-year and the outsourcing amount to civilian depot is reduced.
        4,500원
        7.
        2022.10 구독 인증기관·개인회원 무료
        From Fukushima nuclear disaster, as the water which is supplied by rain and groundwater flow into reactor building, contaminated water which contains radioactive nuclides is occurred. Although about 600 tons of contaminated water was generated at the early of accident, as the groundwater management system is developing, about 150 tons of contaminated water is generated now. Tokyo Electric Power Holdings (TEPCO) operate a multi-nuclide removal equipment which is called ‘ALPS’ and store purified water (ALPS treated water) in the Fukushima NPP site by tank. From 2023, the Japanese government decided to dilute the stored ALPS treated water and discharge it into the ocean to secure space on the site. In this study, based on the data opened to the public by TEPCO, the current status of ALPS is investigated. The dilution and discharge process under conceptual design was investigated. In addition, the treatment capacity of ALPS was analyzed based on the radioactivity concentration data of 7 nuclides. And then, two points to be checked found. First, it was confirmed that the performance of ALPS temporarily decreased between 2015 and 2018 due to reduced replacement cycle of filter and absorbent. Second, it was confirmed that the ALPS treated water from specific ALPS still haven’t satisfied the discharge limit for I-129, Sr-90, and Cs-137. In the case of Cs-137, about 1.7 times the radioactivity concentration was detected compared to the discharge limit. For I-129 and Sr-90, about 2.4 times and 2.1 times of radioactivity concentration was detected compared to the discharge limit. From this study, some of the ALPS treated water are confirmed that the radioactivity concentration exceeds the discharge limit, and the treatment capacity of ALPS might be unstable depend on the ALPS operation such as replacement cycle. Therefore, before the discharging of contaminated water on 2023, it is necessary to inspect ALPS if it purifies contaminated water with reliability or not, and to secure the reliable evaluation method to measure radioactivity concentration.
        8.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the adsorption/desorption performance of toluene was evaluated using zeolite adsorbent to replace activated carbon with one-off and ignition characteristics. For the proper operation of the VOCs adsorption/desorption and condensate recovery steps, the operating range by various adsorption/desorption temperatures was selected. The adsorbent is a bead-type zeolite, which was put into an adsorption tower of 10 LPM scale. As a result, it was demonstrated that 0.079 mg/g was adsorbed at a low temperature (20°C) during adsorption. In the case of desorption, it was found that VOCs adsorbed on the adsorbent were completely recovered after the desorption operation at 220°C for about 160 minutes. However, in the heating rate step for desorption, it was not possible to maintain an appropriate heating rate by filling the tower with zeolite. This was complemented by applying a copper plate with high thermal conductivity, and it was shown that the time was shortened by about 10 minutes or more. When VOCs are emitted at high concentrations during the desorption process, they can be reused as energy resources through low-temperature maintenance, and a condensation method was attempted. The efficiency of condensing chiller (cooler) with temperature control and liquid nitrogen condensing was compared. It was found that the chiller condensing efficiency increased as the temperature decreased. In the case of liquid nitrogen condensation, the liquid nitrogen temperature was maintained at -196°C, showing a stable efficiency of 90%.
        4,000원
        9.
        2022.05 구독 인증기관·개인회원 무료
        Dry head end process is developing for pyro-processing at KAERI (Korea Atomic Energy Research Institute). Dry processes, which include disassembly, mechanical decladding, vol-oxidation, blending, compaction, and sintering shall be performed in advance as the head-end process of pyroprocessing. An important goal of the head-end process is the fabrication of a proper feed material for the subsequent electrolytic reduction process. In the vol-oxidation process, the pellet type-SFs are pulverized by an oxidation under an air-blowing condition, and some volatile fission products are removed from the produced powders by using an air flow. After blending, the U3O8 powders are moved to a compactor of compaction process to obtain U3O8 porous pellets. In the fine powders removal system connected with compactor, for the improved performance of oxide reduction process coupled to dry head-end process, the removal/recovery system for fine powders potentially attached to the surface of oxide reduction raw material was developed and applied to the removal of fine powders from green pellets fabricated in dry head-end process. The removal efficiency of fine powders was also verified using porous U3O8 pellets in the fine powders removal system.
        10.
        2022.05 구독 인증기관·개인회원 무료
        In accordance with the Enforcement Decree of the Act on Physical Protection and Radiological Emergency, operators of Nuclear Power Plants (NPP)s must conduct full cyber security exercise once a year and partial exercise at least once every half year. Nuclear operators need to conduct exercise on systems with high attack attractiveness in order to respond to the unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities. Nuclear facilities identify digital assets that perform SSEP (Safety, Security, and Emergency Preparedness) functions as CDA (Critical Digital Assets), and nuclear operators select exercise target systems from the CDA list and perform the exercise. However, digital assets that have an indirect impact (providing access, support, and protection) from cyber attacks are also identified as CDAs, and these CDAs are relatively less attractive to attack. Therefore, guidelines are needed to select the exercise target system in the case of unauthorized removal of nuclear or other radioactive material and sabotage response exercise. In the case of unauthorized removal of nuclear or other radioactive material, these situations cannot occur with cyber attacks and external factors such as terrorists must be taken into consideration. Therefore, it is necessary to identify the list of CDAs that terrorists can use for cyber attacks among CDAs located in the path of stealing and transporting nuclear material and conduct intensive exercise on these CDAs. A typical example is a security system that can delay detection when terrorists attack facilities. In the case of sabotage exercise, a safety-related system that causes an initiating event by a cyber attack or failure to mitigate an accident in a DBA (Design Basis Accident) situation should be selected as an exercise target. It is difficult for sabotage to occur through a single cyber attack because a nuclear facility has several safety concepts such as redundancy, diversity. Therefore, it can be considered to select an exercise target system under the premise of not only a cyber attack but also a physical attack. In the case of NPPs, it is assumed that LOOP (Loss of Offsite Power) has occurred, and CDA relationships to accident mitigation can be selected as an exercise target. Through exercise on the CDA, which is more associated with unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities, it is expected to review the continuity plan and check systematic response capabilities in emergencies caused by cyber attacks.
        11.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The performance characteristics and usefulness of the duct-type gas removal system to which the catalytic combustion method was applied were investigated by experiment. Benzene, toluene, ethylbenzene, and xylene were selected for performance tests on gas detection and removal of the catalytic combustion system. Accelerated experiments were performed to evaluate the gas sensing performance, the adsorption performance of activated carbon, and the basic performance and durability of the catalytic combustion system. The amount of gas adsorption in the adsorption stage was changed according to the type of activated carbon, adsorption temperature and time. The adsorption amount increased with increasing temperature and particle size. BTEX gas removal rate was about 96%, and the performance of the module was maintained for more than 4,000 hours.
        4,000원
        14.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The cooking-generated particles are major indoor sources of air pollution. Recently, the performance of the range hood is focused on particle removal performance. Range hood with an auxiliary air supply system can improve the fine and ultrafine particles removal efficiency by making a supply air during cooking activities. The particles were measured in the experimental building by varying ventilation types. Only operating range hood during the cooking activities was not enough to reduce the cooking-generated particles. Despite operating range hood systems, fine and ultrafine particle concentrations were maintained when cooking was finished. The range hood with a make-up air supply system can reduce the indoor particle concentration below background conditions when those systems were operated after cooking. In this study, the assessment of cooking-generated particle removal efficiency of the range hood with an auxiliary air supply system was conducted. The removal efficiency of ultrafine particles showed trends similar to the removal efficiency of fine particles.
        4,000원
        15.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원전 일차계통 HyBRID 제염공정에서 발생되는 제염폐액에는 황산이온과 방사성 핵종을 포함한 금속이온 및 발암성 물질의 하이드라진을 포함하고 있어 이를 안전한 수준으로 처리할 수 있는 기술개발이 필요하다. 본 연구에서는 모의 제염폐액 내 황산 및 금속이온의 제거와 하이드라진의 분해시험을 실시하여 황산이온, 금속이온 및 하이드라진을 효과적으로 제거할 수 있는 HyBRID 제염폐액 처리공정을 도출하였으며, 1 L 규모에서의 반복실험과 Pilot 규모(300 L/batch)에서의 평가시험을 통해 도출한 HyBRID 제염폐액 처리공정의 성능 재현성과 적용성을 검증하였다.
        4,000원
        16.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deicing agent refers to the substance that melts snow by exothermic or endothermic chemical reaction after spraying on snow. It also has the function of reducing the freezing point to prevent freezing. However, the long-term use of deicing agent can cause some negative problems, such as pot hole, concrete corrosion, vehicle and steel bridge parts corrosion. At present, wet salt spray deicing is a cost-effective deicing method that is being widely used. Typical deicing agents are calcium chloride and sodium chloride. Deicing equipment is placed to similar or higher corrosive environment than coastal or marine environment due to direct contact to chloride in deicing operation. Therefore, the anti-corrosion control is very important for the maintenance of deicing equipment. In this study, corrosion resistance, blistering and repairability of the deicing equipment were tested by using test standard (salt water production and spraying- KS D 9502 , evaluating degree of rusting- ASTM D 610, evaluating degree of blistering- ASTM D 714, pull-off strangth of coatings- ASTM D 4541). And an economical coating system with long-term antirust performance was constructed. The results show that the performance of the coating system has been improved than with the original coating.
        4,000원
        1 2 3