검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article reported a simple method for preparing diamond/SiC composites by polymer impregnation and pyrolysis (PIP) process, and the advantages of this method were discussed. Only diamond and SiC were contained in the diamond/SiC composite prepared by PIP process, and the diamond particles remained thermally stable up until the pyrolysis temperature was increased to 1600 °C. The pyrolysis temperature has a significant impact on the thermal conductivity and dielectric properties of composites. The thermal conductivity of the composite reaches a maximum value of 63.9 W/mK when the pyrolysis temperature is 1600 °C, and the minimum values of the real and imaginary part of the complex permittivity are 19.5 and 0.77, respectively. The PIP process is a quick and easy method to prepare diamond/SiC composites without needing expensive equipment, and it is of importance for promoting its application in the field of electric packaging substrate.
        4,000원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 Needle-punched C/SiC 복합재료 해석을 위한 효율적인 멀티스케일 해석기법을 소개한다. 기존 Needle-punching으 로 인해 복잡한 미소구조를 갖는 NP 복합재료는 기존의 제안된 복합재료 멀티스케일 기법으로 물성을 계산하는 것은 한계가 있어 왔다. 이를 극복하기 위해 micro-CT 이미지 촬영을 통해 NP 복합재료의 미소구조를 면밀히 파악할 수 있었고, 이미지 프로세싱을 바탕으로 실제구조와 직접적으로 대응할 수 있는 3D high fidelity 모델을 구축하였다. 또한 유한요소해석에 맞춰 요소크기를 조절할 수 있는 sub-region processing 소개를 바탕으로 효율적인 유한요소해석을 수행하였다. NP 복합재료의 미소구조 거동뿐만 아니라, macro-scale 구조해석의 적용을 위해 subcell 모델링을 제안하였다. Needle-punching에 의한 Z축 NP 섬유의 규칙적인 간격을 이용하여 모델링을 수행할 수 있었다. 제안한 두 종류의 모델은 균질화 기법을 이용하여 등가거동 및 등가물성을 파악하였으며, 추가적인 실험 결과와의 비교를 통해 검증을 수행하였다.
        4,000원
        3.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conductive and dielectric SiC are fabricated using electroless plating of Ni–Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni–Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original noncoated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni–Fe coating. Moreover, dielectric constant is sensitively increased with Ni–Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni–Fe coating on SiC fibers. For the composite SiC fibers coated with Ni–Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.
        3,000원
        4.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al2O3-SiC ceramic composites are produced using pressureless sintering, and their plasma resistance, electrical resistance, and mechanical properties are evaluated to confirm their applicability as electrostatic-discharge-safe components for semiconductor devices. Through the addition of Mg and Y nitrate sintering aids, it is confirmed that even if SiC content exceeded 10%, complete densification is possible by pressureless sintering. By the uniform distribution of SiC, the total grain growth is suppressed to about 1 μm; thus an Al2O3-SiC sintered body with a high strength over 600 MPa is obtained. The optimum amount of SiC to satisfy all the desired properties of electrostatic-discharge-safe ceramic components is obtained by finding the correlation between the plasma resistance and the electrical resistivity as a function of SiC amount.
        4,000원
        5.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.
        4,000원
        6.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at 200 oC was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to 1600 oC for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the α-SiC phase; peaks for β-SiC were newly appeared. The formation of β-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial α-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at 1000 oC. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.
        4,000원
        7.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Process conditions for the impregnation of polycarbosilane preceramic polymer into SiC-based composites were investigated. Two kinds of preceramic polymer (PCP) was impregnated into SiC-fiber fabrics with different solvents of n-hexane and divinylbenzene (DVB). Both microstructural observations and mechanical tests were conducted to evaluate the impregnation. The matrix phases were particulated in the case of hexane solvents. Apparent relative density of the matrix was about 78.8%. The density of matrix was increased to about 96.1-98.8% when the DVB was used; however, brittle fracture was observed during a bending test. The modulus of toughness was less than 0.74J/m3. The fabric impregnated with a mixed PCP-dissolved solution showed intermediate characteristics with relative high density of filling (apparent density of ~96.1%) as well as proper bending behavior. The modulus of toughness was increased to about 5.31J/m3. The composites developed by changing the precursor and solvent suggested the possibility of fabricating SiCf/SiC composites without a fiber to matrix interphase coating.
        4,000원
        8.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.
        3,000원
        9.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        based composites are candidate materials for ultra-high temperature materials (UHTMs). has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of . In this study, ?based composites were successfully synthesized and densified through two different processing paths. or 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400. Besides, ?20 vol.%SiC was fully densified with as a sintering additive after hot pressing at 1900. The synthesis mechanism and the effect of sintering additives on densification of ?SiC composites were also discussed.
        4,000원
        10.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.
        4,000원
        11.
        2006.09 구독 인증기관·개인회원 무료
        Sintered composites of Al-8wt%Cu-10vol%SiCp were deformed by repressing or equal channel angular pressing(ECAP) at room temperature, and . Repressing produced more densification than ECAP but resulted in much lower transverse rupture strengths. In both cases, deformation at room temperature and , resulted in much lower strengths than deformation at , and also caused the fracturing of some SiC particles. The higher bend strengths and less SiC fracturing at are attributable to the presence of an Al-Cu liquid phase during deformation. The employment of copper coated SiC instead of bare SiC particles for preparing the composites was found not improving the properties.
        12.
        2006.09 구독 인증기관·개인회원 무료
        Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of and as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the content formed in the reaction.
        13.
        2006.04 구독 인증기관·개인회원 무료
        In this study, multi-ply SiC fiber reinforced Ti-6Al-4V composites have been manufactured by plasma spraying and subsequent vacuum hot pressing. Two different sizes of Ti-6Al-4V feedstock powders were used for plasma spraying to form matrix. A considerable amount of oxygen was incorporated into as-sprayed Ti matrix during plasma spraying, and consequently caused matrix embrittlement. The use of coarse-sized feedstock powder reduced oxygen contamination, but tended to increase fiber spacing irregularity and fiber strength degradation. Longitudinal tensile strength and ductility of the composites were mainly affected by the matrix oxygen content.
        16.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-B4C composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-B4C composites, heat-treated to 1400℃, have shown that their oxidation behaviour at temperatures of 800~1200℃ depends jointly on the total ceramic content and the SiC : B4C ratio. Good compositions of C-SiC-B4C composites exhibiting zero weight loss in air at temperatures of 800~1200℃ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-B4C composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : B4C ratio.
        4,000원
        17.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.
        4,000원
        18.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.
        4,000원
        19.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, densified 4D carbon/carbon composites were made from carbon fiber and coal tar pitch through the process of pressure impregnation and carbonization and then followed by carbonization and graphitization. To improve the oxidative resistance of the prepared carbon/carbon composites, the surface of carbon/carbon composites was coated on SiC by the pack cementation method. The SiC coated layer was created by depending on the constitution of pack powder, and reaction time of pack-cementation. The morpology of crystalline and texture of these SiC coated carbon/carbon composites were investigated by XRD, SEM/EDS observation. So the coating mechanism of pack-cementation process was proposed. The oxidative res istance were observed through the air oxidation test, and then the optimal condition of pack cementation was found by them. Besides, the oxidative mechanism of SiC formed was proposed through the observation of SiC coated surface, which was undergone by oxidation test.
        4,000원
        20.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A centrifugally atomized 2024A1/SiC/sub p/ composites were extruded to study effect of clusters on mechanical properties, and a model was proposed that the strength of MMCs would be estimated from the load transfer model approach that taken into consideration of the clusters. This model has been successfully utilized to predict the strength and fracture toughness of MMCs. The experimental and calculated results show coincidence and that the fracture toughness decreases with increasing the volume fraction of particles. On the basis of experimental observations, we suggest that the strength and fracture toughness of particle reinforced MMCs may be calculated from; σ/sub y/=σ/sub m/V/sub m/+σ/sub r/(V/sub r/-V/sub c)-σ/sub r/V/sub c/, K/sub IQ/=σ/sub Y/((3πt)((r/sub r//V/sub r/)(r/sub c//V/sub c/))/sup 1/2/)/sup 1/2/, respectively.
        4,000원
        1 2