검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 555

        81.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball millingof (Fe, TiH2, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sinteringare tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200and 1300oC for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried outunder the following condition: sintering temperature of 1050oC, soaking time of 10 min, sintering pressure of 50 MPa,heating rate of 50oC/min, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) areobtained from the data stored automatically during sintering process. The densification behaviors are investigated fromthe observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder com-pacts are not densified even after sintering at 1300oC for 3 h, which shows a relative denstiy of 66.9%. Spark-plasmasintering at 1050oC for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of50 MPa.
        4,000원
        82.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.
        4,000원
        83.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and 1300oC for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of 1050oC, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of 50oC, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at 1300oC for 3h. Spark-plasma sintering at 1050oC for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.
        4,000원
        84.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr-13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under 45 μm and over 180 μm, and then they were compacted with various pressures and sintered at 1210oC for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to 79 l/min·cm2. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.
        4,000원
        85.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.
        4,000원
        86.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, ternary compound Max Phase Ti2AlC material was mixed by 3D ball milling as a function of ball milling time. More than 99.5 wt% pure Ti2AlC was synthesized by using spark plasma sintering method at 1000, 1100, 1200, and 1300oC for 60 min. The material characteristics of synthesized samples were examined with relative density, hardness, and electrical conductivity as a function of sintering temperature. The phase composition of bulk was identified by X-ray diffraction. On the basis of FE-SEM result, a terraced structures which consists of several laminated layers were observed. And Ti2AlC bulk material obtained a vickers hardness of 5.1 GPa at the sintering temperature of 1100oC.
        4,000원
        87.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out for the SKD11 carbon nanocomposites.
        4,000원
        88.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about 42.69 μm. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at 1200~1450oC and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to 1.8 μm respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to 2.08 μm respectively.
        4,000원
        89.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, industrial demands for superior mechanical properties of powder metallurgy steel components with low cost are rapidly growing. Sinter hardening that combines sintering and heat treatment in continuous one step is cost-effective. The cooling rate during the sinter hardening process dominates material microstructures, which finally determine the mechanical properties of the parts. This research establishes a numerical model of the relation between various cooling rates and microstructures in a sinter hardenable material. The evolution of a martensitic phase in the treated microstructure during end quench tests using various cooling media of water, oil, and air is predicted from the cooling rate, which is influenced by cooling conditions, using the finite element method simulations. The effects of the cooling condition on the microstructure of the sinter hardening material are found. The obtained limiting size of the sinter hardening part is helpful to design complicate shaped components.
        4,000원
        90.
        2015.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The porous Mg3Sb2 based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric Mg3Sb2 compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the Mg3Sb2 compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous Mg3Sb2 compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of Mg3Sb2 compounds having little pores.
        4,000원
        91.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)- codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to 10.4 μm and decreased the sintered density from 5.47 to 5.37 g/cm3. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at 900 oC were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density (36.4 μA/cm2). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from 2.49 × 1017 to 6.16 × 1017/cm3, and the density of interface state increased from 1.34 × 1012 to 1.99 × 1012/cm2. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.
        4,000원
        92.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% Y2O3 doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature (1400˚C), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.
        4,000원
        93.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of 565-585˚C. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at 580˚C for Al-Zn-Mg powders (composition A), 97.9% at 575˚C for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at 570˚C for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.
        4,000원
        94.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at 400˚C for 2 hour and at 500˚C for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at 1200-1600˚C for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of 1600˚C for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of 95.85kJ/mol-1 was obtained, which is remarkably smaller than the reported ones of 380~460kJ/mol-1 for pressureless sintering of micron-scale tungsten powders.
        4,000원
        95.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-TiC composite powder was fabricated by high-energy milling of powder mixture of (Fe, TiC) and (FeO, TiH2, C) as starting materials, respectively. The latter one was heat-treated for reaction synthesis of TiC phase after milling. Both powders were spark-plasma sintered at various temperatures of 680-1070℃ for 10 min. with sintering pressure of 70 MPa and the heating rate of 50℃/min. under vacuum of 0.133 Pa. Density and hardness of the sintered compact was investigated. Fe-TiC composite fabricated from (FeO, TiH2, C) as starting materials showed better sintered properties. It seems to be resulted from ultra-fine TiC particle size and its uniform distribution in Fe-matrix compared to the simply mixed (Fe, TiC) powder.
        4,000원
        96.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sin-tering process. Three different holding temperatures, 850℃, 875℃ and 900℃ were applied to the spark plasma sinteringprocess with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was mea-sured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be pro-portional to the holding temperature. The full relative density was obtained at 900℃ and the total sintering time wasonly 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperaturealso led to the higher saturation magnetic moment (σs) and the higher coercivity (Hc) in the vibrating sample magne-tometer measurement. The saturation magnetic moment (σs) and the coercivity (Hc) obtained at 900℃ were 56.3 emu/g and541.5 Oe for each.
        3,000원
        97.
        2014.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The current concern about these materials (MoSi2 and NbSi2) focuses on their low fracture toughness below theductile-brittle transition temperature. To improve the mechanical properties of these materials, the fabrication of nanostructuredand composite materials has been found to be effective. Nanomaterials frequently possess high strength, high hardness, excellentductility and toughness, and more attention is being paid to their potential application. In this study, nanopowders of Mo, Nb,and Si were fabricated by high-energy ball milling. A dense nanostructured MoSi2-NbSi2 composite was simultaneouslysynthesized and sintered within two minutes by high-frequency induction heating method using mechanically activated powdersof Mo, Nb, and Si. The high-density MoSi2-NbSi2 composite was produced under simultaneous application of 80MPa pressureand an induced current. The sintering behavior, mechanical properties, and microstructure of the composite were investigated.The average hardness and fracture toughness values obtained were 1180kg/mm2 and 3MPa·m1/2, respectively. These fracturetoughness and hardness values of the nanostructured MoSi2-NbSi2 composite are higher than those of monolithic MoSi2 orNbSi2.
        4,000원
        98.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered byspark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size ofthe irregular shaped 304 stainless steel powders was approximately 42 µm. After high energy ball milling at 800 rpmfor 5h, the powders became spherical with a size of approximately 2 µm, and without formation of reaction compounds.From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles.As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sampleincreased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hard-ness of 550 Hv.
        4,000원
        99.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the sintering behavior and properties of a Ge2Sb2Te5 alloy powders for use as asputtering target by spark plasma sintering. The effect of various sintering parameters, such as pressure, temperature andtime, on the density and hardness of the target has been investigated in detail. Structural characterization was performedby scanning electron microscopy and X-ray diffraction. Hardness and thermal properties were measured by differentialscanning calorimetry and micro-vickers hardness tester. The density and hardness of the sintered Ge2Sb2Te5 materialswere 5.8976~6.3687 g/cm3 and 32~75 Hv, respectively.
        4,000원
        100.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A high temperature dilatometer attached to a graphite furnace is built and used to study the sintering behaviorof B4C. Pristine and carbon doped B4C compacts are sintered at various soaking temperatures and their shrinkage pro-files are detected simultaneously using the dilatometer. Carbon additions enhance the sinterability of B4C with sinteringto more than 97% of the theoretical density, while pristine B4C compacts could not be sintered above 91% due to par-ticle coarsening. The shrinkage profiles of B4C reveal that the effect of carbon on the sinterability of B4C can be seenmostly below 1950°C. The high temperature dilatometer delivers very useful information which is impossible to obtainwith conventional furnaces.
        4,000원
        1 2 3 4 5