YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle s ize of a pprox imately 30 μm. As a r esult of t he PKG t est of t he YAG p hosphor p owder, t he s ynthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.
YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.
Effective control of the heat generated from electronics and semiconductor devices requires a high thermal conductivity and a low thermal expansion coefficient appropriate for devices or modules. A method of reducing the thermal expansion coefficient of Cu has been suggested wherein a ceramic filler having a low thermal expansion coefficient is applied to Cu, which has high thermal conductivity. In this study, using pressureless sintering rather than costly pressure sintering, a polymer solution synthesis method was used to make nano-sized Cu powder for application to Cu matrix with an AlN filler. Due to the low sinterability, the sintered Cu prepared from commercial Cu powder included large pores inside the sintered bodies. A sintered Cu body with Zn, as a liquid phase sintering agent, was prepared by the polymer solution synthesis method for exclusion of pores, which affect thermal conductivity and thermal expansion. The pressureless sintered Cu bodies including Zn showed higher thermal conductivity (180 W/m·K) and lower thermal expansion coefficient (15.8×10−6/℃) than did the monolithic synthesized Cu sintered body.
다공성 분리막은 입자성 물질을 제거하는데 산업적으로 다양하게 응용되고 있다. 기존 다공성 분리막 제작 방법 과 다르게, 용액퍼짐 상분리법은 매우 간단하게 기공을 형성할 수 있다. 먼저 지지층으로 메쉬 위에 물을 적신 후, 물과 혼합 되지 않은 용매에 폴리설폰 용액을 흘려준다. 이때 물과 혼합되지 않은 용매는 쉽게 기화되어 폴리설폰은 얇은 막으로 만들어지게 된다. 기공을 형성하기 위해 폴리설폰 용액에 물과 혼합할 수 있는 물질을 넣게 되면, 넣어주는 농도 비율에 따라 기공크기를 조절할 수 있게 된다. 막의 두께는 쉽게 용액의 농도로 조절이 된다. 다공성 분리막은 메쉬의 형성을 그대로 유지하고 있어 3차원 구조체를 형성하는데 매우 유용하다. 본 연구에서 제시된 용액 퍼짐 상분리법은 매우 낮은 생산단가와 쉬운 공정조절에 의해 기존 분리막에 비해 높은 가격경쟁력을 가질 수 있는 특징을 보이고 있다.
2ZrO2·P2O5 powder, which is not synthesized by solid reaction method, was successfully synthesized through PVA solution method. In this process, the firing temperature and the PVA content strongly affected the crystallization behavior and final particle size. A stable α-phase 2ZrO2·P2O5 was synthesized at a firing temperature of 1200 oC and holding time of 4 h. β-phase 2ZrO2·P2O5 was observed, with un-reacted ZrO2 phases, for firing temperatures lower than 1200 oC. In terms of the PVA content effect, the powder prepared with a PVA mixing ratio of 12:1 showed stable α-phase 2ZrO2·P2O5; however, the β-phase was found to co-exist at relatively higher PVA content. The synthesized α-phase 2ZrO2·P2O5 powder showed an average particle size of 100~250 nm and an average thermal expansion coefficient of −2.5 × 10−6/oC in the range of room temp. ~800 oC.
조직공학이란 손상된 조직에 대한 대체재를 개발, 제조하는 분야이며, 기증자로부터의 조직을 직접 이식하는 방법이 가장 널리 사용되어 왔으나, 최근에는 함성소재로부터의 캐폴드막 제조에 대한 연구가 진행되고 있다. 스캐폴드막은 공극률, 공극직경 및 공극간의 높은 연결성이 요구된다. 이에 대하여 용융주조에 이은 염 침출법이 알려져 있다. 본 연구에서는 용매주조에 이은 염 침출법을 사용하였으며, 이를 통하여 높은 공극률과 공극간의 연결성은 물룬 적합한 공극직경의 우수한 스캐폴드막을 제조하였다.
Artificial insemination is a technique to transfer instrumentally sperm from the male into the female’s reproductive system. A key factor among artificial insemination techniques is gathering sperms. Here, a method for collecting sperm of bumblebee male by pressing was firstly developed. This method has stage of separating reprodutive tract of male, separating accessory testis, separating vas deferens, pressing vas deferens with cover-glass and collecting sperm with syringe. The developed method was 2.8 fold higher in rate of collecting sperm than that of existing method. Among 1M NaCl-, Insect ringer solution-, Phosphate buffered saline(PBS)-collecting sperm solutions, PBS was exhibited the best result as 17.2 sperms/cell, which corresponded to 1.6-1.8 fold increased over the result of other collecting sperm solution. Consequently, we think that this method is very important technique to save time for collecting sperm, to keep activity of sperm and to reduce contamination of sperm.
Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.
Silk fibroin can be damaged or degraded during degumming process. Therefore, it is expected that different structure and properties of silk fibroin can be obtained by different degumming method. However, effect of degumming method on the structure and properties of regenerated silk has not been considered, yet. In this study, Effect of degumming method on the structure and properties of solution, film, and electrospun fiber of regenerated silk was examined. Order of viscosity of regenerated silk solution as follows : Urea method > Acid method, HTHP method > Soap/soda method, Soda method. This viscosity difference among the degumming method strongly influenced the electro-spinning performance of regenerated silk perpared from different degumming method. Also, solution turbidity, crystallinity index (from FTIR), mechanical properties of silk were remarkably affected by degumming method.
The growing conditions of barium nitrate Ba(NO3)2 single crystals using the aqueous solution method have been studied. Supersaturation can be calculated by measuring the temperature of the solution and its equilibrium temperature. Supersaturation of Ba(NO3)2 was 0.7% at 32.0˚C and about 3% at 34.0˚C. The obtained single crystals have three kind of morphology: tetrahedral, cubic, and, rarely, dodecahedral. The normal growth rate is proportional to the supersaturation; it is necessary to make the solution below 5% supersaturation in order to obtain transparent Ba(NO3)2 single crystals. The normal growth rate for 1ar11 faces was 2.51×10-6 mm/s for the 0.7% supersaturation condition (32.0˚C), 6.43×10-6 mm/s for the the condition of 3.0% supersaturation, and 7.01×10-6 mm/s for the condition of 5.0% supersaturation. The quality of the grown crystals depends on the nature of the seed, the cooling rate employed, and the agitation of the solution. The faces of the obtained crystals have been identified uising an X-ray diffractometer. The surface diffusion is responsible for the low growth rates of the 1ar11 faces.
A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.
Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at 1400˚C for 2 h and then reduced at 800˚C for 24 h in 3% H2. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.
SnO nanosheets were prepared at room temperature through a reaction between an aqueous solution of SnCl2, N2F4, and NaOH and were converted into SnO2 nanosheets without a morphological change. The SnO nanosheets were formed through a dissolution-recrystallization mechanism. Uniform and well-dispersed SnO nanosheets with the round-shape morphology were attained when the solution was treated by ultrasonic sound immediately after the addition of NaOH. The SnO2 nanosheets prepared by means of solution reduction under the ultrasonic treatment, and subsequent oxidation at 600˚C showed a high level of gas sensitivity to C2H5OH and CH3COCH3.
WO3-doped SnO2 thin films were prepared in a solution-deposition method and their gas-sensing characteristics were investigated. The doping of WO3 to SnO2 increased the response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to H2 substantially. Moreover, the Ra/Rg value of 10 ppm CO increased to 5.65, whereas that of NO2 did not change by a significant amount. The enhanced response to H2 and the selective detection of CO in the presence of NO2 were explained in relation to the change in the surface reaction by the addition of WO3. The WO3-doped SnO2 sensor can be used with the application of a H2 sensor for vehicles that utilize fuel cells and as an air quality sensor to detect CO-containing exhaust gases emitted from gasoline engines.
This study was carried out to investigate the effects of cryoprotectants, warming solution and removal of lipid on open pulled straw vitrification (OPS) method of porcine embryos produced by nuclear transfer (NT) of fetal fibroblasts. All solutions used during vitrification were prepared with holding medium consisting of 25 mM Hepes buffered TCM199 medium containing 20% fetal bovine serum (FBS) at 38.5℃. The blastocysts derived from NT with or without lipid were vitrified in each medium of different concentrations of dimethyl sulfoxide (DMSO) and ethylene glycol (EG). Also, blastocysts after cryopreservation were warmed into different concentrations of sucrose in warming solution. The optimal concentrations of cryoprotectants in vitrification solution were 10% DMSO + 10% EG in vitrification solution 1 (VS1) and 20% DMSO + 20% EG in vitrification solution 2 (VS2). The optimal concentrations of sucrose were 0.3 M sucrose in warming solution 1 (WS1) and 0.15 M sucrose in warming solution 2 (WS2). Lipid removal from oocytes before NT enhanced the viability of NT embryos after vitrification. Our results show that use of the OPS method in conjunction with lipid removal provides effective cryopreservation of porcine nuclear transfer embryos.