Background: Most patients with chronic stroke have difficulty walking, and various exercise methods are used clinically to improve the disability. Among them, various methods are being applied to improve walking through torso movement. Objectives: This study was conducted to determine the effect of Maitland vertebra joint mobilization exercise and Evjenth trunk muscle stretching exercise on the walking ability of patients with hemiparesis due to chronic stroke. Design: A randomized controlled trial. Methods: In this study, 30 chronic stroke patients with hemiplegia were divided into 15 patients in the Maitland vertebra joint mobilization group (MVJMG) and 15 in the Evjenth trunk muscle stretching exercise group (ETMSEG), and the intervention was conducted for 3 weeks, 5 times a week, 30 minutes a day. After the intervention, walking ability was measured using a gait analyzer. Results: In terms of walking ability, there was a significant increase in walking rate, walking speed, and stride length following the intervention in both the MVJMG and ETMSEG groups (P<.05). When comparing the difference in walking ability between the two groups, there was no significant difference in walking rate. Conclusion: The study found that both Maitland vertebra joint mobilization and Evjenth trunk muscle stretching exercises were effective for improving walking function in chronic stroke patients. However, there was no significant difference in effectiveness between the two interventions.
Background: As ways to optimize the mobilization of postural stability muscles for sitting up motions, arm reaching motions and head raising motions have important effects. Objectives: This study was conducted to investigate the effects of reaching to sit-up training on the trunk muscle activity, postural ability, and balance ability of patients with hemiplegia due to stroke. Design: Randomized controlled trial. Methods: This study was conducted with 18 stroke patients who met the selection criteria divided into two groups: a study group of 9 patents and a control group of 9 patients. The study group carried out reaching to sit-up training, which can promote trunk muscles and improve control through trunk interactions. The control group received general physical therapy intervention Results: The activity of the trunk muscle was significantly different before and after intervention in study and control group. The functional reaching test showed significant changes in both the study group and the control group. The timed up and go test showed a significant change in the study group. Conclusion: Reaching to sit-up training for 4 weeks showed increases in trunk muscle activity in stroke patients and was effective in improving balance ability.
Background: ErigoPro enables acute stroke patients to carry out stable weight-bearing training with gradual verticalization. Study on the effectiveness of robotic assisted treatment equipment for chronic patients is insufficient. Objectives: This study aims to investigate the effect of dynamic vertical posture training using ErigoPro on trunk alignment and balance in chronic stroke patients. Design: Randomized controlled trial. Methods: The subjects of this study were 30 patients were randomly assigned to a study group of 15 patients and a control group of 15 patients. The study intervention was carried out for 50 minutes per day consisting of 30 minutes of general neuro-physiotherapy and 20 minutes of ErogoPro training, 3 times a week for 8 weeks. Results: The study group showed difference in trunk inclination (P<.05), kyphotic angle (P<.05), lateral deviation of the spine (P<.05), thoracic angle (P<.01), timed up and go test (P<.01), Berg balance score (P<.01). There was a significant difference between the groups in the trunk inclination (P<.05), timed up and go test (P<.01), Berg balance score (P<.05). Conclusion: It could be seen that the treatment combined with ErigoPro training for 8 weeks was effective in restoring trunk alignment and improving balance ability in chronic stroke patients.
Background: Core muscle weakness occurs due to trunk asymmetry and spinal malalignment after stroke. Core exercise is being implemented to improve trunk control and sitting position in stroke patients.
Objectives: To investigated the effects of core muscle electrical stimulation on trunk control and dynamic balance in stroke patients.
Design: Quasi-experimental study.
Methods: A total of 30 stroke patients were recruited and divided into two groups: experimental group (core muscle electrical stimulation group) and control group (sham core muscle electrical stimulation group). Trunk impairment scale (TIS) was used to measure trunk control. BioRescue was used to measure sitting dynamic balance.
Results: In both groups, all TIS scores and sitting dynamic balance abilities were improved increased significantly after intervention (P<.05). Changes in TIS scores and sitting dynamic balance abilities were significantly greater in the experimental group than the control group (P<.05).
Conclusion: It was found that core muscle electrical stimulation can be used as an effective method for trunk control and balance recovery in stroke patients.
Background: Trunk movements are an important factor in activities of daily living; however, these movements can be impaired by stroke. It is difficult to quantify and measure the active range of motion (AROM) of the trunk in patients with stroke.
Objects: To determine the reliability and validity of measurements using a digital goniometer (DG) and smart phone (SP) applications for trunk rotation and lateral flexion in stroke patients. Methods: This is an observational study, in which twenty participants were clinically diagnosed with stroke. Trunk rotation and lateral flexion AROM were assessed using the DG and SP applications (Compass and Clinometer). Intrarater reliability was determined using intraclass correlation coefficients (ICCs) with 95% confidence intervals. Pearson correlation coefficient was used to determine the validity of the DG and SP in AROM measurement. The level of agreement between the two instruments was shown by Bland–Altman plot and 95% limit of agreement (LoA) was calculated.
Results: The intrarater reliability (rotation with DG: 0.96–0.98, SP: 0.98; lateral flexion with DG: 0.97–0.98, SP: 0.96) was excellent. A strong and significant correlation was found between DG and SP (rotation hemiplegic side: r = 0.95; non-hemiplegic side: r = 0.90; lateral flexion hemiplegic side: r = 0.88; non-hemiplegic side: r = 0.78). The level of agreement between the two instruments was rotation (hemiplegic side: 23.02° [LoA 17.41°, –5.61°]; non-hemiplegic side: 31.68° [LoA 23.87°, –7.81°]) and lateral flexion (hemiplegic side: 20.94° [LoA 17.48°, –3.46°]; non-hemiplegic side: 27.12° [LoA 18.44°, –8.68°]).
Conclusion: Both DG and SP applications can be used as reliable methods for measuring trunk rotation and lateral flexion in patients with stroke. Although, considering the level of clinical agreement, DG and SP could not be used interchangeably for measurements.
Background: To restore the trunk function of stroke patients who tend to experience trunk weakness, a single exercise intervention is usually applied. However, problems with the trunk remain even after such an intervention. To overcome this challenge, combining other intervention methods with an exercise is suggested during training. Objectives: To investigate the effect of breathing based abdominal draw-in technique on the thickness of the transversus abdominis muscle and trunk control in stroke patients. Design: Randomized controlled study. Methods: After designating a group that will perform the abdominal draw-in technique as Experimental Group I and another group that will perform the breathing based abdominal draw-in technique as Experimental Group II, the thickness of the transversus abdominis muscle and the trunk impairment scale (TIS) of the subjects were measured as pre-tests before the interventions and as post-tests after the six week intervention period. Results: In the within group comparison, there was a significant change in the thickness of the transversus abdominis muscle for both groups while the subjects performed the abdominal draw-in technique; a significant change was also noted in their TIS (P<.05) (P<.01). However, in the inter-group comparison, a significant difference was found only in the TIS between the two groups (P<.05). Conclusion: After the application of the breathing based abdominal draw-in technique, an efficient contractile response was observed even in the muscles around the abdomen of the subjects, which indicates that this technique is an intervention method that can more effectively improve trunk control.
Background: Stroke patients have weak trunk muscle strength due to brain injury, so a single type of exercise is advised for restoring functionality. However, even after intervention, the problem still lies and it is suggested that another intervention method should be applied with exercise in order to deal with such problem.
Objectives: To Investigate the effect of bridge exercise combined with functional electrical stimulation (FES) on trunk muscle activity and balance in stroke patients.
Design: Randomized controlled trial.
Methods: From July to August 2020, twenty stroke patients was sampled, ten patients who mediated bridge exercises combined with functional electrical stimulation were assigned to experiment group I, and ten patients who mediated general bridge exercises were assigned to experiment groupⅡ. For the pre-test, using surface EMG were measured paralyzed rectus abdominis, erector spinae, transverse abdominis/internal oblique muscle activity, and using trunk impairment scale were measured balance. In order to find out immediate effect after intervention, post-test was measured immediately same way pre-test.
Results: Change in balance didn’t show significant difference within and between groups, but muscle activity of trunk was significant difference rectus abdominis and erector spinae within groups I (P<.01), also between groups was significant difference (P<.05).
Conclusion: Bridge exercise combined with FES could improve trunk function more effectively than general bridge exercise due to physiological effect of functional electrical stimulation.
Background: Stroke patients have reduced trunk control compared to normal people. The ability to control the trunk of a stroke patient is important for gait and balance. However, there is still a lack of research methods for the characteristics of stroke control in stroke patients.
Objects: The aim of this research was to determine whether trunk position sense has any relation with balance and gait.
Methods: This study assessed trunk performance by measuring position sense. Trunk position sense was assessed using the David back concept to determine trunk repositioning error in 20 stroke patients and 20 healthy subjects. Four trunk movements (flexion, extension, lateral flexion, rotation) were tested for repositioning error and the measurement was carried out 6 times per move; these parameters were used to compare the mean values obtained. Subjects with stroke were also evaluated with clinical measures of balance and gait.
Results: There were significant differences in trunk repositioning error between the stroke group and the control group in flexion, lateral flexion to the affected side, lateral flexion to the unaffected side, rotation to the affected side, and rotation to the unaffected side. Mean flexion error: post-stroke: 7.95 ± 6.76 degrees, control: 3.32 ± 2.27; mean lateral flexion error to the affected side: 6.13 ± 3.79, to the unaffected side: 5.32 ± 3.15, control: 3.57 ± 1.92; mean rotation error to the affected side: 8.25 ± 3.09, to the unaffected side: 9.24 ± 3.94, control: 5.41 ± 1.82. There was an only significant negative correlation between the repositioning error of lateral flexion and the Berg balance scale score to the affected side (–0.483) and to the unaffected side (–0.497). A strong correlation between balance and gait was found.
Conclusion: The results of this study indicate that stroke patients exhibit greater trunk repositioning error than age-matched controls on all planes of movement except for extension. And lateral flexion has correlation with balance and gait.
Background: Weakness of the abdominal and mid thoracic muscles the lead to thoracic kyphosis of stroke patients. The trunk muscles activity of stroke patients is significantly related to upper extremity.
Objectives: To investigate the effect of seated exercise of thoracic and abdominal muscles on upper extremity function and trunk muscles activity in stroke patients.
Design: One-group pretest-posttest design.
Methods: A total of 27 stroke patients were recruited. All stroke patient were given seated abdominal exercise (posterior pelvic tilt exercises) and thoracic exercise (postural-correction exercise). All exercises were conducted for 30 minutes, three times a week for four weeks. The manual function test (MFT) and electromyography (EMG) were measured, and EMG electrodes were attached to thoracic paraspinal muscles and lower rectus abdominal muscles. EMG signal is expressed as %RVC (reference voluntary contraction).
Results: Experimental group showed significant increases in abdominal muscles, paraspinal muscles activity and MFT total score, items of arm motion (forward elevation of the upper extremity, lateral elevation of the upper extremity, touch the occiput with the palm) in MFT after four weeks.
Conclusion: These results suggest that, in stroke patients, seated exercise of thoracic and abdominal muscles contribute to improve trunk muscles activity and upper extremity function in stroke patients.
Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.
Background: Stroke patients usually have arm weakness, which affects trunks and arms. Objective: To investigate the effects of paretic side and non-paretic side arm training on trunk control and upper limb functions.
Design: Randomized Controlled Trial (single blind).
Methods: Twenty patients with stroke in hospital were enrolled in the study. Twenty subjects were randomly assigned to paretic side arm training group (PATG, n = 10) or non-paretic side arm training group (NATG, n = 10). Trunk impairment scale (TIS) was used for trunk control, and box and block test (BBT) was used for upper limb function. Training was conducted for 4 weeks.
Results: PATG showed significant difference in TIS (static balance, dynamic balance, coordination, total score) and BBT. NATG showed significant differences in static balance, and dynamic balance and total score except for coordination and BBT. PATG also showed a more significant difference in BBT and coordination and total score than NATG.
Conclusions: The arm training performed on the paretic side are more effective than those performed on the non-paretic side in improving both upper limb function and trunk control in stroke patients.
목적 : 본 연구는 급성기 뇌졸중 환자에서 동작관찰 체간훈련이 체간조절능력, 균형, 일상생활수행능력에 미치는 효과를 알아보고자 실시하였다. 연구방법 : 2017년 7월 3일부터 2018년 4월 30일까지 전북 익산 소재의 W 대학병원에 입원한 급성기 뇌졸중 환자 14명을 실험군과 대조군으로 무작위 할당하였다. 두 군 모두 일반적인 물리·작업치료를 실시하였다. 추가적으로 실험군에는 동작관찰 체간훈련을, 대조군은 풍경관찰 체간훈련을 각 1일 1회 30 분, 주 5회, 총 3주간 실시하였다. 치료 중재 전·후 체간조절능력을 측정하기 위해 체간 손상 척도 (Trunk Impairment Scale; TIS), 균형능력을 측정하기 위해 수정된 기능적 팔 뻗기 검사(Modified Functional Reach Test; M-FRT)와 버그균형척도(Berg Balance Scale; BBS)를 사용하였고, 일상생활활동 수행능력을 평가하기 위해 한국판 수정된 바델 지수(Korean version of Modified Barthel Index; K-MBI)을 사용하였다. 결과 : 3주 중재 후, 두 그룹에서 중재 전·후 체간조절능력, 균형, 일상생활수행능력에서 유의한 차이가 나타났으며 (p<.05), 중재 후 두 그룹 간 변화량의 차이는 TIS와 M-FRT에서 유의한 차이가 나타났다(p<.05). 결론 : 본 연구 결과 동작관찰 체간훈련이 급성기 뇌줄중 환자의 체간조절능력, 균형, 일상생활수행능력을 향상시킬 수 있는 중재 방법으로 나타났다. 따라서 기립 훈련기에서 동작관찰 체간훈련은 급성기 뇌졸중 환자에게 능동적이고 동적인 체간훈련을 제공할 수 있는 새로운 중재 방법으로 사용될 수 있을 것이다.
Background: Hemispatial neglect is defined as the failure to attend, report, respond, or orient toward meaningful stimuli provided in the contralateral side of a brain lesion. Objects: This study was conducted to find out the effect of dynamic trunk equilibirum exercise for stroke patients with hemi-spatial neglect. Methods: This study included 21 stroke subjects, randomly assigned to either the experimental group or the control group. The exercise program consisted of 5 sessions of 20 minutes per week during 4 weeks. The line-bisection test, the Albert test, the balance function score, the Berg balance scale, the postural assessment scale for stroke and the modified Barthel index were measured before and after training. All data were analyzed using SPSS 12.0 for Windows. Between-group and within-group comparison was analyzed by using Independent t-test and Paired t-test respectively. Results: The results of study were as follows: There were significant differences between before and after intervention in both group (p<.05). There were significant differences in the line-bisection test, Albert test, balance function score, Berg balance scale, postural assessment scale for stroke and modified Barthel index between the experimental group and the control group (p<.05). Conclusion: Dynamic trunk equilibrium exercise had a positive effect on patients’ neglect, balance ability and activities of daily living. Further studies are required to generalize the results of this study.
Background: Patients with chronic stroke often shows decreased trunk muscle activity and trunk performance. To resolve these problems, many trunk stabilizing techniques including the abdominal drawing-in maneuver (ADIM) and the diaphragmatic breathing maneuver (DBM) are used to improve trunk muscle strength. Objects: To compare the effects of the ADIM and the DBM on abdominal muscle thickness, trunk control, and balance in patients with chronic stroke. Methods: This was a randomized controlled trial. Nineteen patients were randomly allocated to the ADIM (n1=10) and DBM (n2=9) groups. The ADIM and DBM techniques were performed three times per week for 4 weeks. The thicknesses of the transversus abdominis (TrA), internal oblique muscle, and external oblique muscles on the paretic and non-paretic sides, Trunk Impairment Scale (TIS) score, and Berg Balance Scale (BBS) score were used to assess changes in motor development after 4 weeks of training. Results: After the training periods, the TrA thickness on the paretic side, TIS score, and BBS score improved significantly in both groups compared to baseline (p<.05). TIS score was significantly greater in the DBM group than in the ADIM group (p<.05). Conclusion: This study demonstrated that ADIM and DBM are beneficial for improving TrA muscle thickness in the paretic side, trunk control, and balance ability. Intergroup comparison revealed that TIS score was significantly improved in the DBM group versus the ADIM group. Thus, DBM may be an effective treatment for low trunk muscle activity and performance in patients with chronic stroke.
The purpose of this study is to identify the effects of two trunk stability exercise types on the gait factors of stroke patients. We randomly divided 24 old elderly patients with hemiplegia, who were hospitalized due to stroke, into a two groups, each with its own six-week exercise program: one that used of a dynamic trunk stability exercise using with physio-balls(n=12) and a group of one that used a static trunk stability exercise using on mats(n=12). After measuring the participants gait ability a sin a pre-test, we again measured their ability again as in a posttest after two-for both types of six-week exercise programs for each group. The analysis of the data analysis showed that both ball and mat exercise programs significantly improved the participants’ gait velocity and stride length; cadence, however, was significantly changed only by the ball exercise program. In conclusion, both types of trunk stability exercise may be useful in improving the gait ability of stroke patients, and, in particular, the former can be used as an exercise method that effectively significantly affects more various other gait factors.
This study aimed to identify the asymmetry observed in the electromyography (EMG) activity patterns of selected trunk and thigh muscles between the affected and unaffected sides during the sit-to-stand movement in ambulatory patients with post-stroke hemiparesis. This study included 20 patients with post-stroke hemiparesis. The differences between stroke fast walkers (, 11 subjects) and stroke slow walkers (<8 m/s, 9 subjects) were compared. The activation magnitude and onset time of the multifidus, lumbar erector spinae, hamstrings, and quadriceps during the sit-to-stand movement were recorded through surface EMG. Moreover, the EMG activation magnitude and onset time ratios of each bilateral corresponding muscle from the trunk and leg were measured by dividing the relevant values of the unaffected side by those of the affected side. In all the subjects, the activation magnitudes of the multifidus, hamstring, and quadriceps on the affected side significantly decreased compared to those on the unaffected side (p<.05). The onset time of muscle activity in the affected side was markedly delayed for the multifidus and quadriceps during the task (p<.05). The activation magnitude ratios of the quadriceps were markedly decreased in the stroke slow walkers as compared to those in the stroke fast walkers. These findings indicate that the asymmetry in the multifidus, hamstring, and quadriceps muscle activation patterns in patients with post-stroke hemiparesis may be due to the excessive muscle activation in the unaffected side to compensate for the weakened muscle activity in the affected side. Our findings may provide researchers and clinicians with information that can be useful in rehabilitation therapy.
The aim of this study was to investigate correlations of the Trunk Control Test (TCT), Postural Assessment Scale for Stroke (PASS-TC), and Trunk Impairment Scale (TIS) and to compare the TCT, PASS-TC, TIS and its subscales in relation to balance, gait and functional performance ability after stroke. Sixty-two stroke patients attending a rehabilitation program participated in the study. Trunk control was measured with the use of TCT, PASS-TC, TIS balance (Berg Balance scale; BSS), gait ability (10 m walk test), functional performance ability (Tuned Up and Go Test TUG) and the mobility part of the Modified Barthel index (MBI), Fugl Meyer-Upper/Lower Extremity (FM-U․L/E). The scatter-plot (correlation coefficient) was composed for the total scores of the TCT, PASS-TC, and TIS. The multiple regression analysis was performed to evaluate the impact of trunk control on balance, gait, and functional performance ability. Twenty eight participants (45.2%) and twenty participants (32.3%) obtained the maximum score on the TCT and PASS-TC respectively; no subject reached the maximum score on the Trunk Impairment Scale. There were significant correlations between the TIS and TCT (r=.38, p<.01), PASS-TC (r=.30, p<.05), TCT and PASS-TC (r=.59, p<.01). Stepwise multiple regression analysis showed that the BBS score (β=.420~.862) had slightly more power in predicting trunk control than the . TIS-dynamic sitting balance, TUG and the MBI-mobility part. This study clearly indicates that trunk control is still impaired in stroke patients. Measures of trunk control were significantly related with values of balance, gait and functional performance ability. The results imply that management of trunk rehabilitation after stroke should be emphasized.
목적 : 본 연구에서 뇌졸중 환자의 체간 조절(PASS, TCT)과 균형(BBS, FM-B) 및 일상생활동작(MBI)과의 관련성과 각 변수들과의 영향력을 알아보고자 하였다. 연구방법 : 본 연구는 뇌졸중으로 인한 편마비 진단을 받은 환자 43명을 대상으로 체간 조절 평가(Postural Assessment Scale for Stroke : PASS, Trunk Control Test : TCT), 균형 평가(Berg Balance Test : BBS, Fugl-Meyer Assessment - Balance : FM-B), 일상생활동작 평가(Modified Barthel Index : MBI)등을 이용하였고, 자료 분석은 피어슨 상관 분석(pearson correlation coefficient)과 단계적 다중 회귀분석(stepwise multiple regression)을 이용하였다. 결과 : PASS 자세 유지, 자세 변환, 총합은 TCT와 r=.78~.96(p<.01)으로 체간 조절 평가 도구간에 매우 유의한 상관관계가 있는 것으로 나타났다. PASS, TCT는 BBS, FM-B(r=.65~.82), MBI(r=.75~.79)에서 유의한 상관관계가 있었으며(p<.01), BBS, FM-B는 MBI(r=.77~.78)와 유의한 상관관계가 있었다(p<.01). FM-B와 BBS는 r=.84(p<.01)로 유의한 상관관계가 있는 것으로 나타났다. MBI의 보행 항목이 PASS 자세유지, 자세변환, 총합, FM-B(p<.001), TCT, BBS에 가장 영향력을 주는 것으로 나타났으며(p<.01), PASS의 지지없이 서기 항목이 MBI, FM-B, TCT, BBS에 가장 영향력을 주는 것으로 나타났다(p<.001). PASS 총합은 MBI에 가장 영향력을 주는 것으로 나타났다(p<.01). PASS 세부 항목 중 개인 위생, 목욕하기, 화장실 사용, 계단 오르기, 보행, 의자․침상 이동은 지지 없이 서기가 가장 영향을 주는 것으로 나타났으며(p<.001), 식사하기는 누운자세에서 테이블 가장자리에 앉기(p<.001), 옷입기는 환측으로 돌아눕기(p<.01)가 가장 영향력을 주는 것으로 나타났다. 결론 : PASS, TCT, BBS, FM-B, MBI간에 유의한 관련성을 보였으며 변수들과의 인과관계 분석을 통하여 예측 가능한 변수들을 제시 하였다. 또한 환자의 기능적 회복과 재활 치료 후 결과를 예측하거나 영향을 줄 수 있는 변수를 찾아내어 그에 대한 집중적인 치료의 병행이 환자의 성공적인 재활 치료를 위한 전략이 될 수 있을 것이다. 추후 임상적인 평가도구로서 적극적인 활용과 그 유용성에 대한 연구가 필요하다.
The purpose of this study was to establish the reliability of the Trunk Impairment Scale (TIS) translated into Korea in patients with stroke. It also aims to score the quality of trunk movement and to be a tool for the treatment. The TIS consists of three subscales that static sitting balance, dynamic sitting balance and co-ordination. The TIS score ranges from a minimum of 0 to a maximum of 23. Twenty-five stroke patients (13 males, 12 females) were examined by two physiotherapists. Interrater and test-retest reliability were assessed. Kappa and weighted kappa values for the items of the trunk assessment of the TIS ranged from .67 to 1.00. Intraclass correlation coefficients for interrater and test-retest agreement were .95 and .97. Cronbach alpha coefficients for internal consistency range from .87 to .97. The TIS provide reliable assessments for the trunk and are valid scales for measuring trunk performance in patients with stroke. TIS can be used as a guideline for treatment and the assessment of quality of trunk activity.
The purpose of this study was to evaluate isometric trunk extension strength in hemiplegic patients, and to compare that with normal subjects to find a correlation between trunk extension strength and the functional independent degree in hemiplegic patients. Fifteen hemiplegic male patients (mean age 55.2±10.2 years) and twenty-five healthy male subjects (mean age 54.6±10.3 years) completed isometric trunk extension. Strength was measured at 0, 12, 24, 36, 48, 60, and 72 degrees of trunk flexion. The functional independent degree was assessed by Functional Independence Measure (FIM). Mean isometric trunk extension strength was 91.2 ft-lbs, 120.7 ft-lbs, 142.3 ft-lbs, 156.4 ft-lbs, 173.5 ft-lbs, 184.1 ft-lbs, and 195.3 ft-lbs in the hemiplegic patients group, and 135.6 ft-lbs, 175.6 ft-lbs, 204.4 ft-lbs, 221.9 ft-lbs, 231.2 ft-lbs, 246.8 ft-lbs, and 259.7 ft-lbs in the normal subjects group. The values of isometric trunk extension strength had a descending linear correlation pattern from trunk flexion angle to extension angle. Trunk extension strength in hemiplegic patients was significantly lower than that of normal subjects (p<.05) but did not correlate with the FIM total score (p>.05). Therefore, the isometric trunk extension strength in hemiplegic patients was lower than that of normal subjects and did not correlate with the functional independent degree.