세라믹 타겟인 Ta2O(sub)5을 장착한 rf-마그네트론 스퍼터를 이용하여 Ta2O(sub)5 완충층을 증착하고, Sr(sub)0.8Bi(sub)2.4Ta2O(sbu)9 용액을 사용하여 MOD 법에 의해 SBT 막을 성장시킨 metal/ferroelectric/insulator/semiconductor (MFIS) 구조인 Pt/SBT/Ta2O(sub)5/Si 구조의 Ta2O(sub)5 완충층 증착시의 O2유량비, Ta2O(sub)5 완충층 두께에 따른 전기적 특성을 조사하였다. 그리고 Ta2O(sub)5 박막의 완충층으로써의 효과를 확인하기 위해 Pt/SBT/Ta2O(sub)5/Si 구조와 Pt/SBT/Si 구조의 전기적 특성을 비교하였다. Ta2O(sub)5 완충층 증착시의 O2유량비가 0%일 때는 전형적인 MFIS 구조의 C-V 특성을 얻지 못하였으며, 20%의 O2유량비일 때 가장 큰 메모리 윈도우 값을 얻었다. 그리고 O2유량비가 40%, 60%로 증가할수록 메모리 윈도우는 감소하였다. Ta2O(sub)5 완충층의 두께의 변화에 대한 C-V 특성에서는 36nm의 Ta2O(sub)5 두께에서 가장 큰 메모리 값을 얻었다. Pt/SBT/Si 구조의 메모리 윈도우 값과 누설전류 특성은 Pt/SBT/Ta2O(sub)5/Si 구조의 값에 비해 크게 떨어졌으며, 따라서 Ta2O(sub)5 막이 우수한 완충층으로써의 역할을 함을 알았다.
고주파 저손실 재질로 사용되고 있는 Mn-Zn 페라이트의 제조공정 중 소결조건과 Ta2O5첨가가 Mn-Zn 페라이트의전력손실에 미치는 영향에 대해서 연구하였다. 등조성선을 따라 냉각하기 위하여 컴퓨터를 사용해서 정확하게 산소분압을 조절하였으며 적절한 등조성선을 선택함으로써 보다 좋은 손실특성을 얻을 수 있었다. CaO-SiO2 첨가계에 Ta2O5를 0ppm에서 400ppm으로 변화시켜 가며 첨가하였으며, Ta2O5 가 400ppm 첨가되었을 경우 균일한 grain 성장과 더불어 낮은 전력손실을 나타내었다. 온도에 상응하는 상평형 산소분압을 정확히 맞춰 냉각할 경우 전력손실 최소값이 질소 분위기에서 냉각시킨 시편보다 높은 온도쪽으로 이동됨도 확인할 수 있었다.
열산화 및 PECVD법으로 p-type(100)Si wafer위에 Ta2O5, 박막을 형성한 후 이들 박막의 전기적 특성과 박막응력 상호간의 관계를 연구하였다 열산화 시편의 경우 dc magnetron sputtering법으로 Ta을 증착시킨 후에 산화온도와 시간을 변수로 열산화시켜 박막을 형성시켰으며 PECVD 시편의 경우 RF power density를 변화시켜가면서 박막을 형성시켰다. 이들 박막의 전기적 특성과 박막응력을 조사하여 전기적 특성과 박막응력 상호간의 관계를 조사한 결과 열산화 박막의 경우 누설전류와 박막응력은 독립적인데 반해 PECVD 박막의 경우 박막응력의 절대값은 누설전류가 증가함에 따라 증가하였다.
본 연구에서는 반응기체 PaCl5 (99.99%)와 N2O(99.99%)를 사용하여 PECVD법으로 P-type(100) Si기판위에 Ta2O5 박막을 증착시킨후 RTA 후처리를 통하여 누설전류를 개선시키고자 하였다. 실험결과, 증착온도 증가에 따라 굴절율은 일정하게 증가하였고 500˚C에서 최대 증착속도를 보였다. 증착된 Ta2O5막의 FT-IR 분석결과 증착온도 증가에 따라 Ta-O bond peak intensity가 증가함을 알 수 있었으며, 누설전류 특정결과 증착온도가 증가함에 따라 누설전류값이 감소함을 알 수 있었다. 또한 증착된 Ta2O5막을 RFA방법을 이용하여 후처리 한 결과, as deposited 상태보다 누설전류가 감소함을 알 수 있었으며 이는 RTA처리후 AES와 FT-IR 분석을 통하여 Ta2O5막 내의 oxygen농도와 Ta-O bond peak intensity를 측정한 결과 RTA 후처리에 의하여 Ta2O5막내의 존재하는 O-deficient 구조들이 감소한 때문이었다.
P-type(100)Si Wafer 위에 400Å의 Ta를 증착하여 열산화법으로 Ta2O5박막을 형성시킴 후 RTA후처리를 통하여 절연파괴전장 특성 개선을 이루고자 하였다. 유전상수에 미치는 RTA후처리의 영향은 미약하지만 절연파괴전장을 나타내었으나 결정화 온도 이하의 RTA온도에서는 절연파괴전장이 5.4MV/cm로 RTA효과가 크게 나타났다. 이러한 RTA효과는 RTA온도 575˚C에서 flat band voltage shift가 RTA 시간에 따라 변화가 없는 것으로 미루어 보아 RTA효과는 계면 변화에 의한 것이 아님을 알 수 있었으며, RBS 분석을 통하여 Ta2O51박막의 치밀화에 의한 것임을 확인할 수 있었다.
Ta2O5 박막은 실리콘산화막, 실리콘질화막 박막에 비해 유전율은 높으나 누설전류밀도가 높고, 절연파괴강도가 낮아 DRAM의 커패시터용 재료로서 실용화가 되지 못하고 있다. 본 연구에서는 LPCVD법으로 형성시킨 300Å 두께의 Ta2O5 유전체박막에 대해 후속열처리 또는 전극재료를 변화시켜 열악한 전기적 특성의 원인을 규명하고자 하였다. 그 결과 다결정 실리콘 전극의 경우 성막상태의 Ta2O5 박막은 전극에 의한 환원반응에 의해 전기적 특성이 열화됨을 알 수 있었고, 이를 TiN 전극의 사용으로 억제시킬 수 있었다. 다결정 실리콘 전극의 경우 성막상태의 Ta2O5 유전체는 누설정류밀도가 10-1A/cm2, 절연파괴강도가 1.5MV/cm 정도였으며, 800˚C에서 O2열처리를 하면 전기적 특성은 개선되나, 유전율이 낮아진다 TiN 전극을 채용할 경우 누설전류밀도 10-6~10-7A/cm2, 절연파괴강도 7~12MV/cm 로 ONO(Oxide-Nitride-Oxide) 박막과 비슷한 Ta2O5 고유전막을 얻을 수 있었다.