검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2006.09 구독 인증기관·개인회원 무료
        An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.
        6.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150 for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115 for 1 hour under . W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.
        4,000원
        8.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Resistance sintering under ultra-high pressure if developed to fabricate W-Cu composite containing 5 to 80v/o copper. The consolidation was carried out under pressure of 6 to 8 GPa and input power of 18 to 23 kW for 50 seconds. The densification effect and microstructure of these W-Cu composites are investigated. The effect of W particle size on ,sintering density was also studied. The micro hardness was measured to evaluate the sintering effect.
        4,000원
        10.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.
        4,000원
        13.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to enhance sinterability of W-Cu composites used for heat sink materials, mechanical alloying process where both homogeneous mixing of component powders and fine dispersion of minor phase can be easily attained was employed. Nanostructured W-Cu powders prepared by mechanical alloying showed W grain size ranged of 20-50 nm and were able to be efficiently sintered owing to the fine particle size as well as uniform distribution of Cu phase. The thermal properties such as electrical resistivity, coefficient of thermal expansion and thermal conductivity were evaluated as functions of temperature and Cu content. It was found that the coefficient of thermal expansion could be controlled by changing Cu content. The measured electrical resistivities and thermal diffusivities were also varied with Cu content. The thermal conductivities calculated from the values of resistivities and diffusivities showed similar tendency as a function of temperatures. However, this is in contradiction with thermal conductivities of pure W and Cu which decrease with increasing temperature.
        4,000원
        17.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The W-Cu composite powders were synthesized from W and Cu elemental powders by ball-milling process, and their microstructural changes and sintering behaviors were evaluated. The ball milling process was carried out in a 3-dimensional mixer (Turbula mixer) using zirconic () ball and alumina () vial up to 300 hrs. The ball-milled W-Cu powders revealed nearly spherical shape. Microstructure of the composite powders showed onion-like structure which consists of W and Cu shells due to the moving characteristic of Turbula mixer. The W and Cu elements in the composite powders milled for 300 hrs were homogeneously distributed, and W grain size in the ball-milled powder was smaller than 0.5 . Fe impurity introduced during ball milling process was very low as of 0.001 wt%. The relative sintered density of ball-milled W-Cu specimens reached about 94% after sintering at .
        4,000원
        20.
        1998.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in and atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110 had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120 for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.
        4,000원
        1 2