This study aims to optimize the SDC (Spinning Dust Collector) system in amphibious assault vehicle engines through numerical analysis of dust and moisture particle separation efficiency using CFD-DPM. Focusing on an axial cyclone structure, the research evaluates separation efficiency across various particle sizes and flow conditions. The results demonstrate that vortices generated by cyclone blades play a critical role in influencing particle trajectories and improving separation performance. Additionally, the study highlights the significant impact of engine flow conditions and housing design, emphasizing that their careful optimization enhances the system's efficiency in separating dust and water. These findings offer valuable insights into optimizing inlet and outlet flow paths and cyclone housing design, providing a solid foundation for advancing SDC system performance in high-efficiency engines.
상수도 시스템에서의 사고 발생은 사용자들의 물 이용 불편으로 인해 막대한 사회경제적 피해를 초래할 수 있는 위협 요인이며, 따라서 수도사업자들은 수도정비기본계획 등을 통해 상수도 사고를 빠르게 복구하고, 피해 규모를 최소화하기 위한 다양한 노력을 기울이고 있다. 본 연구는 상수도 시스템에서 발생하는 관로사고 상황에 대하여 회복탄력성을 정량적으로 평가하고, 비상급수 방안을 포함한 사고 대응 전략의 효과를 분석하기 위한 평가 모형을 개발하였다. 개발 모형은 시스템의 회복탄력성에 기여하는 다양한 특성들을 반영할 수 있는 시간단위 공급 부족량과 충족률 지표를 통해 회복탄력성을 평가하며, 국내 지방상수도 시스템의 특정 구역을 대상으로 관로사고 시나리오를 모의하여 개발 모형의 적용 효과를 검증하였다. 결과적으로 개발 모형을 통해 비상연계관로, 배수지 충수, 병물 공급 등 비상대응 방안의 효과를 정량적으로 평가하였으며, 이를 통해 시스템의 회복탄력성 향상을 위한 설계 및 운영 전략 수립의 가능성을 확인하였다.
Today, as the social demand for tap water safety and the need for an ICT-based intelligent integrated control system increase, K-water (Korea Water Resources Corporation) is building and operating a ‘Water pipe monitoring CCTV system’ to quickly respond to crises in the event of a water leak. However, in the case of the existing system, when the CCTV rotates, the image information and the mapped water pipe image do net match, so the operator has the limitation that the water pipe image must be mapped anew every time. In this paper, in odert to solve the above problems, we propose an improved system that can extract feature points from CCTV images, detect changes in the coordinate values of the feature points, and automatically transform the location of the water pipe image by utilizing LoFTR (Detector-Free Local Feature Matching with Transformer), a type of deep learning image matching algorithm that is actively being studied in th field of the latest computer vision, and examine its effectiveness.
안정적이고 효율적인 수자원 공급을 보장하는 것은 가정, 산업, 공공 보건 분야 복지에 필수적이다. 상수도 시스템에서 이상을 감지하기 위해 데이터 모델, 수리 모델 기반 시뮬레이션 등 다양한 접근 방식을 통해 이상감지 역량이 꾸준히 향상되어 왔으나, 현장 적용 및 검증에 한계가 있어 실질적인 활용은 폭 넓게 이루어지지 못하고 있다. 실제 적용 가능한 이상감지 시스템 측면에서, 본 연구에서는 유량 및 압력 계측 데이터를 활용하여 시스템 내 이상 발생을 신속하게 감지하고 개략적인 위치를 파악하기 위한 실시간 이상감지 및 탐색 모델을 제안하였다. 제안된 모델은 유량수지 분석, 유량-수두손실 관계, EPANET 기반 수리 해석 방법을 통합하여 이상 감지 및 위치 파악의 정확성을 개선시키고자 하였다. 현장 실험 결과, 제안된 모델은 높은 신뢰도에서 시스템 내 이상유량의 발생을 효과적으로 감지하고, 발생 구간을 파악할 수 있는 것으로 나타났다. 본 연구 성과는 시스템의 실시간 이상 감지 및 운영관리를 위한 실효성 있는 접근 방식을 제공함으로써 상수도 시스템의 지속 가능하고 회복력 있는 운영관리에 기여할 것으로 기대된다.
아세트아미노펜(acetaminophen, ACT)과 이부프로펜(ibuprofen, IBU)은 수생환경에서 발견되는 대표적인 의약품으로, 다양한 수생생물에서 생물독성영향을 나타내는 것으로 알려져 있으나 이들이 해양생물에 미치는 독성영향은 잘 알려져있지 않다. 이에 본 연구는 ACT 및 IBU가 기수산 물벼룩 Diaphanosoma celebensis에 미치는 급성독성영향 및 해독, 항산화, 탈피 연관 유전자의 발현에 미치는 영향을 조사하였다. 급성독성시험 결과, ACT 및 IBU는 D. celebensis에 상대적으로 낮은 급성독성영향을 나타냈다 (48-h LC50 ACT: 120.72 mg/L 및 48-h LC50 IBU: 212.23 mg/L). 해독효소 유전자의 발현은 ACT 노출 시 모두 유의하게 감소한 반면 IBU 노출 시 Cytochrome P450 (CYP) 360A8, glutathione S-transferease (GST) theta, 및 ATP-binding cassette (ABC) transporter B1 유전자의 발현이 증가하였으며, 이는 ACT 및 IBU가 해독 경로에 미치는 영향이 서로 다를 수 있음을 의미한다. 반면 ACT 및 IBU의 노출은 공통적으로 D. celebensis의 항산화 및 탈피 연관 유전자의 발현을 감소시키는 것으로 나타났다. 본 연구의 결과는, ACT 및 IBU가 서로 다른 작용기전을 통해 대사될 수 있지만, 공통적으로 해양 동물성플랑크톤의 산화환원 항상성과 생식경로에 잠재적인 독성영향을 나타낼 수 있음을 시사한다.
The pressure sensor had been widely used to effectively monitor the flow status of the water distribution system for ensuring the reliable water supply to urban residents for providing the prompt response to potential issues such as burst and leakage. This study aims to present a method for evaluating the performance of pressure sensors in an existing water distribution system using transient data from a field pipeline system. The water distribution system in Y District, D Metropolitan City, was selected for this research. The pressure data was collected using low-accuracy pressure sensors, capturing two types of data: daily data with 1Hz and high-frequency recording data (200 Hz) according to specific transient events. The analysis of these data was grounded in the information theory, introducing entropy as a measure of the information content within the signal. This method makes it possible to evaluate the performance of pressure sensors, including identifying the most sensitive point from daily data and determining the possible errors in data collected from designated pressure sensors.
In this study, we investigated the time signal devices of Deungnu (circa 1270) and Gungnu (1354), the water clocks produced during the Yuan Dynasty (1271–1368). These clocks influenced Heumgyeonggaknu (1438) of the Joseon Dynasty (1392–1910), exemplifying the automatic water clocks of the Yuan Dynasty. Deungnu, Gungnu, and Heumgyeonggaknu can be considered as automatic mechanical clocks capable of performances. The Jega-Yeoksang-Jip (Collection of Calendrical and Astronomical Theories of Various Chinese Masters) contains records of Deungnu extracted from the History of the Yuan Dynasty. We interpreted these records and analyzed reproduction models and technical data previously produced in China. The time signal device of Deungnu featured a four-story structure, with the top floor displaying the four divine constellations, the third floor showcasing models of these divinities, the second floor holding 12-h jacks and a 100-Mark ring, and the first floor with four musicians and a 100-Mark Time-Signal Puppet providing a variety of visual attractions. We developed a 3D model of Deungnu, proposing two possible mechanical devices to ensure that the Time-Signal Puppet simultaneously pointed to the 100-Mark graduations in the east, west, south, and north windows: one model reduced the rotation ratio of the 100-Mark ring to 1/4, whereas the other model maintained the rotation ratio using four separate 100-Mark rings. The power system of Deungnu was influenced by Suunuisangdae (the water-driven astronomical clock tower) of the Northern Song Dynasty (960–1127); this method was also applied to Heumgyeonggaknu in the Joseon Dynasty. In conclusion, these automatic water clocks of East Asia from the 13th to 15th centuries symbolized creativity and excellence, representing scientific devices that were the epitome of clock-making technology in their times.
왕피천 수계 내 저서성 대형무척추동물의 군집구조 분석을 위해 총 5개 지점에서 2023년 총 4회(4월, 6월, 8월 11월) 조사를 실시하였다. 조사기간 중 저서성 대형무척추동물은 총 5문 7강 17목 77과 156종 17,179.1개체/㎡가 채집되었다. 수환경 변화에 민감한 E.P.T. 분류군은 전체 156종 중 91종이 출현하여, 전체 출현종의 58.3%를 차지 하였다. 섭식기능군(FFGs) 분석결과, 종 출현 양상은 육식성 포식자(Predator: P)가 51종(32.69%)으로, 개체 출현 양상은 주워먹는 무리(Gathering-collector: GC)가 6,867.2개체/㎡(39.97%)로 높은 비율로 출현하였다. 서식기능 군(FHGs) 분석결과, 붙는 무리(Clinger: CL)가 70종(44.87%), 12,720.6개체/㎡(74.04%)로 가장 높은 비율로 출현 하였다. 군집지수 분석결과, 우점도지수(DI) 0.43, 다양도지수(H′) 3.51, 풍부도지수(R1) 4.59 균등도지수(J′) 0.77 로 나타났다. 생물학적 수질 판정 지수(BMI) 분석결과, 평균 92.36(±0.83)으로 모든 지점에서 “매우 좋음”으로 판정되었다.
Risk assessment on Jeju Special Self-Governing Province(JSSGP)’s water supply facilities and establishment of adaptation measures for climate crisis factors were implemented. JSSGP’s vulnerability to the climate crisis was high in the order of drought, heat wave, heavy rain and strong wind. As a drought adaptation measure, policies of water saving and revenue water ratio improvement were considered. As for the heat wave adaptation measure, the introduction of an advanced water treatment process was suggested in response to the increase of algae cell number which resulting in taste and odor problem. As for heavy rain adaptation measures, the installation and operation of automatic coagulant injection devices for water purification plants that take turbid surface water were proposed. As a measure to adapt to strong winds, stabilization of power supply such as installation of dual power line was proposed in preparation for power outages. It is expected that water facilities will be able to supply high-quality tap water to customers even under extreme climate conditions without interruption through risk assessment for climate crisis factors and active implementation of adaptation measures.
The spectrum of this study was research on the closed hydroponic cultivation of netted melons (Cucumis melo L.) using coir substrate, analyzing the impact of this cultivation method on melon yield, fruit quality, and the efficiency of water and nutrient usage. The experimental results showed that the average fruit weight of the melons grown in a closed system was 71.4 g higher than that of the open system, and the fruit width was on average 0.2 cm larger, showing a statistically significant difference. However, there was no difference in the average sugar content of the fruit flesh and height. Although there is no substantial commercial difference, it is conjectured that the change in the macronutrients ratio in the irrigation has played a role in the statistically significant increase in fruit weight, which is attributed to changes in the crops' nutrient uptake concentrations. This necessitates further research for a more comprehensive understanding. In terms of the productivity of irrigation required to produce the fruit, applying the closed system resulted in an increase of 7.6 kg/ton compared to the open system, saving 31.6% of water resources. Additionally, in terms of nutrients, cultivating in a closed system allowed for savings of approximately 59, 25, 55, 83, 76, and 87% of N, P, K, Ca, Mg, and S, respectively, throughout the entire cultivation period. As the drainage was reused, the ratios of NO3 - and Ca2+ increased up to a maximum of 9.6 and 9.1%, respectively, while the ratios of other ions gradually decreased. In summary, these results suggest that closed hydroponic cultivation can effectively optimize the use of water and fertilizer while maintaining excellent fruit quality in melon cultivation.
This study aims to prepare a colloidal silica-containing powder to enhance the solubility and dissolution rate of rivaroxaban using a self-nanoemulsifying drug delivery system (SNEDDS). We investigate the impact of colloidal silica on a nanoemulsion system for preparing powdered SNEDDS. The liquid SNEDDS comprises 30/20/50 (w/w/w) Peceol/ Cremophor RH40/Tween 80, which results in the formation of the smallest droplets. Three powdered SNEDDS formulations are prepared by suspending the liquid SNEDDS formulation using colloidal silica and spray drying. The powdered SNEDDS prepared with liquid SNEDDS and colloidal silica at a ratio of 1/0.5 (w/w) exhibits the highest water solubility (0.94 ± 0.62 vs. 26.70 ± 1.81 μg/mL) and dissolution rate (38.4 ± 3.6 vs. 85.5 ± 3.4%, 45 min) when compared to the drug alone. Morphologically, the liquid SNEDDS is adsorbed onto colloidal silica and forms smaller particles. In conclusion, an SNEDDS containing rivaroxaban, prepared using colloidal silica, facilitates the creation of a nanoemulsion and enhances the water solubility of rivaroxaban. Accordingly, this technology holds significant potential for commercialization.
This study attempted to analyze the comparative advantage in terms of disaster safety costs in verifying the effectiveness and economic feasibility of the high-performance water-bulwark system in the pole tunnel, which was recently promoted as a part of the acceleration of vehicles. The tunnel to be analyzed was divided into a short tunnel(Anyang, Cheonggye) and a long tunnel(Suraksan, Sapaesan). As a result, it was analyzed that 25% of the improvement effect would occur if one lane was secured by applying the Water-Bulwark System. It was analyzed that this is because the time value cost, which accounts for a large proportion of the traffic congestion cost of short tunnels and pole tunnels, differs depending on the congestion time and traffic volume, not the length of the tunnel.
To improve the safety of tap water, a study was conducted on the introduction of sanitation safety certification system for water treatment plants(WTPs). In order to produce and supply safe tap, the inflow of pollutants should be blocked as much as possible during the tap water production process, and contaminated materials should be removed or inactivated to a safe level in the WTPs. In order to block the inflow of pollutants in WTPs, it is necessary to strengthen the sanitation management such as installation of facilities for preventing inflow and habitat of larvae, and to remove or inactivate pollutants in the tap water production process, strengthening the safety management such as enhanced turbidity management is needed. Sanitation and safety management in the WTPs can be significantly improved by introducing certification system of WTPs. This will induce continuous improvement in water purification plants with insufficient sanitation and safety management, and provide incentives for WTPs with good sanitation and safety management. In addition, when the WTPs sanitation and safety certification system is established, it is desirable to expand the proposed system from WTPs to the entire process of tap water production and supply.
In general, fire accidents in tunnels are sufficiently preventable, but the damage is very large. Therefore, the number of highway traffic accidents is high in spring when spring fatigue occurs and the traffic volume for maple travel increases. In particular, when analyzing the cause of death of people killed in fire accidents in tunnels, it is analyzed that most of them are suffocated by smoke. Therefore, in this study, it can be said that it is meaningful to make a social contribution to reduce the number of traffic accident deaths by establishing an efficient fire suppression system for fire accidents in tunnels.