Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.
항만 내 선박과 부두의 사고를 예방하기 위하여 통항 및 접안 안전성 평가를 통하여 안전한 부두가 건설되어 관리하고 있으나, 선 박의 접안 및 계류 과정에서 선박이 부두에 충돌하거나 로프로 인한 인명사고의 발생 등 예측할 수 없는 사고들이 종종 발생한다. 자동계류장 치는 선박의 신속하고 안전한 계류를 위한 자동화된 시스템으로 로봇 매니퓰레이터와 흡착 패드로 구성된 탈/부착 메커니즘을 가지고 있다. 본 논문은 자동계류장치의 흡착 패드의 위치 및 속도제어에 필요한 선체와의 변위 및 속도 측정 시스템을 다룬다. 자동계류장치에 적합한 측 정 시스템을 설계하기 위하여, 본 논문은 우선 센서의 성능 및 실외 환경적 특성 분석을 수행한다. 다음으로 이러한 분석 결과를 토대로 실외 부두환경에서 설치되는 자동계류장치에 적합한 변위 및 속도 측정시스템의 구성 및 설계 방법에 대해 기술한다. 또한 센서의 측정상태 감지 및 속도 추정을 위한 알고리즘을 제시한다. 제안된 방법은 다양한 속도 구간에서의 변위 및 속도 측정 실험을 통해 그 유용성을 검증한다.
Dry active wastes (DAWs) are combustible waste generated during the operation and decommissioning of nuclear facilities, and are known to be generated in the amount of approximately 10,000 to 40,000 drums (based on 200 L) per unit. It consists of various types of protective clothing, paper, and plastic bags, and is stored in radioactive waste storage facilities. Therefore, reducing the volume of DAWs is an important issue in order to reduce storage costs and utilize the limited space of waste storage facilities. Heat treatment such as incineration can dramatically reduce the volume of waste, but as the waste is thermally decomposed, CO2, a global warming gas, is generated and there is a risk of emissions of harmful gases including radionuclides. Therefore, a heat treatment process that minimizes the generation of CO2 and harmful gases is necessary. One of the alternatives to incineration is to carbonize DAWs, dispose of carbonized materials below the release standard as non-radioactive waste, and selectively separate and stabilize inorganic components, including radionuclides, from carbonized DAWs. In this study, 13 types of DAWs generated from nuclear power plants were selected and their thermal decomposition characteristics were investigated to design a heat treatment process that replaces incineration. As a result of TGA analysis, the temperature at which thermal decomposition of each waste begins is 260-300°C for cotton, 320-330°C for paper, 315-420°C for synthetic fiber, 350°C for latex gloves. The mass of most samples decreased to less than 1 % of the initial weight after heat treatment, and dust suit and latex gloves had residues of 13.83% and 13.71% of the initial mass, respectively. The metal components of the residue produced after heat treatment of the sample were analyzed by EDS. According to the EDS results, cotton contains Ca and Al, paper contains Ca, Al and Si, synthetic fiber contains Ca, Cu and Ti, latex gloves contain Ca and Mg. Additionally, ICP analysis was performed to quantify the inorganic components. These results are expected to be applicable to the processing of DAW generated at nuclear facilities in the future.
Microclimate analysis was conducted through actual measurement according to land use status in urban, and CFD analysis was conducted to analyze and predict the microclimate characteristics of urban, and compared and analyzed with the actual measurement results. It was measured in high-rise areas and parks, and the temperature of the park area was 0.4 to 0.6℃ lower, and the relative humidity was 1.0 to 3.0% higher. The correlation coefficient was obtained by comparing the results of the computational fluid analysis with the results of the computational fluid analysis at the actual location located within the CFD analysis area for validation. The seasonal correlation coefficients are all higher than 0.8, so it is judged that they can be applied to microclimate analysis in urban area. The computational fluid analysis was divided into three areas (low-rise, low and high-rise, and high-rise) centered on the A2 point. On average, the low-rise area was 0.1 to 0.4% higher than the high-rise area. In the low and high-rise area and high-rise area, the pith of buildings are wide, so the airflow is smooth, so it is judged that the temperature is relatively low.
The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin method. When X-rays were used the relationship of sin measured on the surface layer of the processing metal did not show linearity when the sin method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, becomes a sin function. Since cannot be used as a constant, the relationship in sin cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren’s diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.
Micro-climate measurements and computational fluid analysis were conducted to use it as basic data for the preservation and management of the old house of Kim Myung-kwan, a traditional building that is National Folk Cultural Property No. 26. As a result of the actual measurement, the temperature and humidity are relatively evenly distributed indoors unlike outdoors, but the temperature and humidity vary depending on the time change and the installation location in the outdoors. It was found that the temperature increases after dawn and the temperature varies depending on the installation position around 14:00–15:00, when the temperature becomes the highest. In particular, the temperature was high at the outdoor measurement point adjacent to the building and the fence. As a result of the computational fluid analysis, the temperature was high in the buildings and fences in the old house or in the area adjacent to the building, and it was about 1℃ higher than the surrounding area. In this area, it is judged that the thickening of wood will occur more severely than in other locations, and special preservation management is required.
In this study, a mixed resin containing Bis-GMA was developed to produce a light-emitting sign using quantum dots. As a result of measuring the viscosity, color coordinates change, and luminance of the mixed resin, the following conclusions were obtained. The viscosity of the mixed resin decreased as the content of the diluent increased, and viscosity values ranged from 3,627 to 1,349cps showed as a result. The viscosity of the mixed resin decreased as the temperature increased, and the viscosity showed a value of 5,156 to 1,132cps. For the optical properties of InP/GaP/ZnSe/ZnS quantum dots, the absolute quantum efficiency was 91% at 522nm and 90% at 618nm when the gallium was 0.01%. The luminance of the light-emitting sign using the resin mixed with quantum dots was showed 142.6cd/m2 in white and 104.2cd/m2 in the red region.
Recently, air pollution from fossil fuels is at a serious level, and the IMO proposes to reduce greenhouse gas emissions by about 70% by 2050, and controls greenhouse gas emissions by applying the energy efficiency disign index(EEDI) to each ship type. In this study, the marine fuel oil viscosity of MGO, MDO, HFO and CGO according to the temperature change was compared and measured and the difference was analyzed. As a result, the viscosity of CGO was 3.32mPa·s, which was almost similar to MGO(3.40mPa·s) and MDO(3.51mPa·s) so it was judged that it could be used as a marine fuel, and it was found that there was a significant difference with HFO at P<0.01 there was.
이 연구는 지속가능한 수자원 이용 및 관리대책을 수립하는 데에 필요한 수문학적 자료를 제공할 목적으로 2017~2020년 홍수기 (6~9월)에 발생한 총 59회의 강우 사상에 대한 강우-유출 특성을 파악하였다. 그 결과, 강우량은 5.0~400.8 mm, 유출고는 0.1~176.5 mm, 유출률은 0.1~242.9%의 범위로 나타났다. 그리고 유출수문곡선에서 직접유출과 기저유출을 분리한 결과, 홍수기의 총 유출일 대비 기저유출 (139.3일)이 직접유출 (78.3일)보다 유출기간이 길었지만, 총 유출고에 대한 기여도는 직접유출 (54.2%)이 기저유출 (45.8%)보다 높게 나타났다. 또한, 유출에 영향을 미치는 강우조건을 분석한 결과, 직접 유출과 기저유출의 유출고 및 첨두유출고에 높은 유의성 (p<0.05)을 보이는 강우조건은 강우량과 강우지속시간으로 나타났다. 특히, 유출고와 첨두유출고의 강우량은 각각 5.0~200.4, 10.5~110.5 mm의 범위에서는 기저유출이 우세한 강우사상이 나타났지만, 유출고와 첨두유출고의 강우량이 각각 267.4~400.8, 169.0~400.8 mm의 범위에서는 직접유출이 우세한 강우사상이 나타났다. 앞으로 극한 기후현상에 따른 물 부족이 심화할 것으로 예상되는 가운 데, 산지계류의 직접유출 및 기저유출에 대한 장기적이고도 지속적인 분석이 이루어진다면 지표수-지하수의 이용 및 관리 측면에서의 활용과 자료의 신뢰성을 높일 수 있을 것으로 판단된다.
PURPOSES : The cooling characteristics of the asphalt mixture in a moving dump truck were analyzed using a numerical simulation method. The cooling characteristic can be used to determine the optimum transport path for minimizing the temperature drop of the asphalt mixture. METHODS : In this research, a coupled analysis of the discrete element method (DEM) with computational fluid dynamics (CFD) was applied for cooling characteristic analysis of asphalt mixtures in transit. Two different transit speeds, 30 km/h and 60 km/h, were considered to evaluate the effect of speed on the temperature drop of the asphalt mixture. Velocity, pressure, and temperature contours were plotted and temperature variations were compared.
RESULTS : Most of the temperature drops in the asphalt mixture were observed in the middle of the dump box in the longitudinal direction. It was confirmed that a faster speed causes a greater temperature drop for the same travel time and a slower speed causes the more temperature to reach the same travel distance as expected.
CONCLUSIONS : It is concluded that the coupled analysis method can be used to quantitatively evaluate the effect of vehicle speed on temperature drop in asphalt mixtures. In addition, the method can be used to determine the optimum travel path considering environmental conditions and traffic congestion.
Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.
2020년 7월에 도시계획시설(공원) 실효제가 시행됨에 따라, 본 논문에서는 서울시 근린공원 중 시민의 이용과 사유지가 많은 미집행 근린공원 35개소를 대상으로 공원이 실효되기 전 보상 및 관리방안을 마련하기 위한 연구를 진행하였다. 선행연구 분석, 현장조사, GIS분석 및 전문가의 자문 등을 통해 공원 특성에 따른 장·단기적 대응지 분류기준 및 공원보상 우선순위 기준 마 련하였다. 연구내용은 실효시기를 기준으로 장·단기적 대응지를 구분하여 단기적 대응지는 ‘접근성, 이용성, 관리성’에 따라 3가지의 순위로 구분하였으며, 장기적 대응지는 국공유지, 중 복규제지, 접근성 취약지, 공원기능 상실지로 구분하였다. 연구결과 대부분의 근린공원은 필지 별로 특성이 상이하여 공원 내 장·단기적 대응지가 혼재하여 분포하고 있는 것으로 확인되었 으며, 특히 까치산, 염창, 영축산, 고덕 등은 단기적 대응지의 보상필요면적의 20% 이상이므로 집행이 시급한 것으로 나타났다. 또한 장기적 대응지 중 국공유지의 비율이 80% 이상인 낙산, 청량, 배봉산, 계남, 노량진, 불광, 와룡과 중복규제지의 비율이 공원 내 50% 이상인 세곡, 광 평, 고덕의 경우 해당 항목의 분포 비율이 높으므로 각 규제에 따라 공원별 통합 관리가 가능할 것으로 사료된다.
PURPOSES : This study analyzes the characteristics of generated fine particulate matter (PM2.5) and nitrogen oxide (NOX) at roadsides using a statistical method, namely, a generalized linear model (GLM). The study also investigates the applicability and capability of a machine learning methods such as a generalized regression neural network (GRNN) for predicting PM2.5 and NOX generations.
METHODS : To analyze the characteristics of PM2.5 and NOX generations at roadsides, data acquisition was conducted in a specific segment of roads, and PM2.5 and NOX prediction models were estimated using GLM. In addition, to investigate the applicability and capability of a machine learning methods, PM2.5 and NOX prediction models were estimated using a GRNN and were compared with models employing previously estimated GLMs using r-square, mean absolute deviation (MAD), mean absolute percentage error (MAPE), and root mean square error (RMSE) as parameters.
RESULTS : Results revealed that relative humidity, wind speed, and traffic volume were significant for both PM2.5 and NOX prediction models based on estimated models from a GLM. In addition, to compare the applicability and capability of the GLM and GRNN models (i.e., PM2.5 and NOX prediction models), the GRNN model of PM2.5 and NOX prediction was found to yield better statistical significance for r-square, MAD, MAPE, and RMSE as compared with the same parameters used in the GLM.
CONCLUSIONS : Analytical results indicated that a higher relative humidity and traffic volume could lead to higher PM2.5 and NOX concentrations. By contrast, lower wind speed could affect higher PM2.5 and NOX concentrations at roadsides. In addition, based on a comparison of two statistical methods (i.e., GLM and GRNN models used to estimate PM2.5 and NOX), GRNN model yielded better statistical significance as compared with GLM.
Quality management has become an pervasive philosophy in most sectors of business. Specific movements such as statistical quality control, quality circle, total quality management, and quality management system have become embedded in business organizations. Only the companies with competitive edge can survive in the competition in global market. KSA(Korean Standards Association) established in 1962 has launched all kinds of quality education, quality standard certification service for business, and KNQA(Korean National Quality Award) system. This article considers quality competitiveness excellent company award among KNQA. We performed a statistical analysis of audit data for quality competitiveness excellent company for three years, from 2015 to 2017. By using ANOVA and two sample t-tests, the average scores of 13 evaluation fields were significantly different depending on company size and type. We proposed ways to improve the current hall of fame system. We discovered that the average scores of 13 evaluation fields in the audit data according to years and hall of fame status were not significantly different. We also showed linear relationships among 13 evaluation fields by correlation analysis and obtained an estimated linear regression equation : Business Performance, which is a comprehensive index, as a dependent variable was significantly related to Customer Focus and Product Liability as regressor variables among 13 evaluation fields by regression analysis.
본 연구는 효과적인 사면복원을 위해 친환경 식생자루의 특성을 분석하였다. 경북대학교에서 개발한 친환경 식생자루와 기존에 국내에서 사용하던 론생백과 황마씨자루를 대상으로 인장강도시험, 내후성시험, 전단강도시험을 통해 식생자루별 특성을 비교분석 하였으며, 친환경 식생자루의 현장적용가능성을 파악하기 위해 상주시 목재문화체험관 뒷 사면에 시공하여 실외발아실험을 진행하였다. 그 결과, 친환 경식생자루가 기존의 식생자루에 비해 200 N 높은 인장강도를 보였으며, 내후성시험에서는 근소한 차이로 기존의 식생자루가 높은 저항성을 보였으나, 강도의 분포가 고르지 않은 경향을 나타냈다. 전단강 도시험에서는 친환경식생자루가 높은 토양응집력과 접촉효율을 나타내어, 현장시공 시 높은 토양안정 효과를 가져 올 것으로 판단된다. 마지막으로 실외발아실험결과, 초본, 관목, 교목 모두 70%의 높은 피복율을 나타냈다. 따라서 친환경 식생자루가 기존의 식생자루에 비해 사면복원 및 녹화사업에 유리한 것으로 분석되었다. 본 연구는 친환경 식생자루와 기존의 식생자루의 특성을 비교함으로써 효과적인 사면복원 방법 및 친환경 재료의 활성화에 대한 기초자료로 활용될 것으로 판단된다.