This paper explores Thailand’s partial liberalization of the electricity industry and to what extent is a Foreign Direct Investment (FDI) allowed in the electricity sector. As Thailand is an ASEAN Member State, the paper aims to review whether the partial liberalization under the ESB model is consistent with the commitments of the ASEAN. The paper examines both the ACIA and the AFAS, and it finds that Thailand has no commitment under both agreements relevant to entry of a FDI in its electricity sector. However, Thailand already allows the entry of a FDI in the power generation business which is aligned with the principles of market access and National Treatment that fulfill the obligations under the ACIA and the AFAS in case Thailand will make any commitments in the future. It is noted that electricity transmissions and the distribution and supply businesses are still prohibited for both Thai and foreign investors.
Deregulation of electricity market has brought new business opportunities for electricity suppliers. As of 2011, there are around 60 electricity retailers in the Danish market competing against each other (Yang, 2013). Thus, Danish households have the opportunities to choose different electricity services, green electricity services vs. the conventional brown electricity (generated from fossil fuels) service. However, statistics have indicated that the movement of electricity market deregulation has produced little effect on Danish consumers in terms of switching among suppliers or renegotiating an existing service contract (Yang, 2014). Unfortunately, evidences from the actual market show that the penetration of green electricity remains very low (Yang, 2013). This is bad, because Denmark’s long-term energy goal is to become a fossil fuel independent nation by 2050.
The study divided a sample 1022 respondents into two nearly equal sized sub-samples chosen from an Internet Panel administrated by a commercial marketing research firm. One subsample received a positive frame version of the questionnaire regarding subscribing to a green electricity contract, and the other subsample received a negative frame version of the questionnaire. The selected sample reflects the Danish population structure in terms of the major socio-economic variables such as gender and age. Contingent valuation (CV) method was used to value the households’ willingness to subscribe a green electricity service contract (Alberini & Kahn, 2006).
As expected, consumers displayed stronger intention to buy green electricity when the situation was framed in a positive maner (i.e., most Danish households have already bought it), as compared to the situation was framed in a negative manaer. The theoretical explaning can be formulated in terms of the theory of social norms. The framing effect also signals the public good side of green electricity in that there seems to be a free rider problem. The relatively low intention to buy green electricity in the negative frame manner (i.e., a few Danish household has bought green electricity) indicates that the free-rider incentive is particularly powerful in large group, where an indivudal may percived that her or his behavior will have only little influence on the collective outcome (Olsen, 1970). The results confimrs the finding from (Ek & Söderholm, 2008).
Global warming has pressured companies to put a greater emphasis on environment management which allows them to reduce environmental impact and costs of their operations. In Korea, the coal-fired power plants take a large account of electricity generation at 31.7% of the total electricity usage in 2014. Thus, environmental impact of coal-fired power plants is significant. This paper illustrated how to compute environmental impact and costs in electricity generation at a coal-fired power plant using MFCA methodology. Compared to the traditional accounting, an advantage of MFCA is to provide information on electricity generation costs and environmental wastes incurring throughout the production process of electricity. Based on MFCA, the coal-fired power plant was able to reduce production cost of electricity by 52.3%, and environmental wastes by 47.7%. As a result, MFCA seemed to be an effective tool in environmental management for power plants.
As power consumption increases, more power utilities are required to satisfy the demand and consequently results in tremendous cost to build the utilities. Another issue in construction of power utilities to meet the peak demand is an inefficiency caused by surplus power during non-peak time. Therefore, most power company considers power demand management with time-based electricity rate policy which applies different rate over time. This paper considers an optimal machine operation problem under the time-based electricity rates. In TOC (Theory of Constraints), the production capacities of all machines are limited to one of the bottleneck machine to minimize the WIP (work in process). In the situation, other machines except the bottleneck are able to stop their operations without any throughput loss of the whole manufacturing line for saving power utility cost. To consider this problem three integer programming models are introduced. The three models include (1) line shutdown, (2) block shutdown, and (3) individual machine shutdown. We demonstrate the effectiveness of the proposed IP models through diverse experiments, by comparing with a TOC-based machine operation planning considered as a current model.
Experimental hot-water heating system was consisted of power supply equipment, a hot water storage tank, circulating pump, fan coil unit and a plastic flexible hose. This heating system was manufactured by an electric heater of a power capacity 6kw/h and light-oil hot air heater in control the heating capacity was 5,000kcal/h. As the result, temperature difference due to hot-water heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, and comparison greenhouse were 14.8℃, 13.4℃ respectively. It was found that root-zone temperature of experimental plot and control were 22℃, 15℃. Root-zone temperature in the experimental plot was 7℃ higher than that in control. The inlet-outlet water temperature difference of 2℃ and 3℃ corresponded to the difference of the heat exchange of about 3,132kcal/h, 4,916kcal/h, the heat exchange effciency ranged from 54~88% generally. Under the experimental condition, equation heat change(Y) and correlation could be represented as follows : Y = -282.92x2 + 2963.9x -1688.6, R2 = 0.9081. it is suggested to applicate energy of root-zone warming system where energy from the groundwater is extracted and transferred to the water
본 연구는 길이 15 m, 폭 5.6 m, 동고 2.9 m인 단동 비닐 온실 2동을 대상으로 실험구와 대조구로 나누어 실시하였다. 시스템은 전기히터를 이용한 온수가온기로서 온수저장조와 순환펌프, 팬코일유닛으로 구성하였다. 폐회로시스템의 온수배관을 통하여 온수가 순환되도록 하였으며 팬코일유닛을 통해 온실내부를 난방 하도록 하였다. 연구결과를 요약하면 다음과 같다. 실험기간 동안 순환유량은 26L/min 정도의 범위에 있었고, 평균유속은 2.0m/s 정도였다. 유출입수의 평균 온도차는 60±2℃ 이었다. 근권부 온도를 측정한 결과 처리구에는 22℃, 대조구에서는 15℃로 나타나 처리구 근권부 온도가 약 7℃ 높게 유지되었다. 입출구 온도차에 따른 열교환량은 온도차가 2℃일 경우 시간당 열교환량은 3,132kcal이고, 3.4℃일 경우 4,916kcal로서 열교환방정식은 y=-282.92X2+2963.9X-1688.6, R2=0.9081로 상관관계가 매우 높은 것으로 나타났으며 열교환효율은 54~88%로 온도차가 클수록 열교환효율은 높게 나타났다.
태양광 또는 풍력을 이용해 발생된 에너지를 효율적으로 저장과 사용을 위한 납 축전지의 성능을 향상 시키기 위해 전해액을 Semi-gel화 하여 납축전지에 적용하여 시험한 결과, 다음과 같은 결과를 얻었다. Semi-gel 전해액은 silica를 5wt.% 혼합한 전해액이 1시간 30분경과 시 gel화가 시작되었다. 이는 전해액이 격리판과 극판 활물질 내부까지 완전히 스며들기에 충분한 시간으로 가장 적정한 gel화 시간을 나타내었다. Semi-gel 전해액을 사용한 납축전지와 액상 전해액을 사용한 납축전지의 방전 성능을 비교한 결과, 저율방전 성능은 semi-gel전해액이, 고율방전 성능은 액상 전해액이 높은 성능을 나타내었다. 이는 gel 전해액의 경우 액상 전해액에 비해 반응속도가 느려 고율방전 성능이 낮은 것으로 나타내었다. 수명성능을 DOD 10%, DOD 100%로 시험한 결과, 5%-silica 전해액이 액상 전해액을 사용한 납축전지에 비해 우수한 수명 성능을 나타내었다. 이는 Semi-gel상 태의 전해액이 납축전지 내부 화학반응 시 발생하는 gas의 재결합 효율을 높여 전해액 감액량이 최소화로 한 결과로 수명성능에서 큰 차이를 나타내었다. 태양광, 풍력 등과 같은 에너지 저장 효율을 높이고, 수명성능을 향상시키기 위해 전해액에 5%-silica전해액을 사용하면 전해액의 감액량이 최소로 되어 DOD 100% 수명시험의 경우 4.8%, DOD 10% 수명시험의 경우 20%의 수명성능이 향상되었다.
This study fouces on the electricity generation of B1PV system in the super-tall buildings. To improve the efficiency of the B1PV system, solar irradiance and air temperature should be taken into consideration. This study does research on, one of two main parameters, the solar irracliance in the super high-rise buildings. According to the measurement of solar irracliance, it increased with altitude. It is, particularly, more obviously in the super-tall buildings than others. Subsequently, to make an accurate B1PV elecrticity generation prediction,it is necessary to anaiyze the solar irracliance distribution on the super-taII building's facade which is a prerequisite for optimal B1PV system design.
Bumblebees are widely used to pollinate crops in greenhouses and fields. Here we firstly developed an apparatus for the oviposition induction of the bumblebee Bombus ignitus using electricity. The apparatus consists of boxes for colony initiation, part of temperature control, part of heat transfer, and moving shelf. The result shows that the rates of oviposition and colony foundation in the newly developed apparatus are respectively 3.9% and 5.2% higher than in the existing apparatus using hot water. More importantly, the newly developed apparatus is 75% cheaper in costs and can more save energy than existing apparatus. These results indicate that the newly developed apparatus could serve as an effective apparatus for the oviposition induction of B. ignitus.
The study measures the resource use efficiency of diesel based power generation in the Maldives and analyses factors which influence efficiency levels. Stochastic frontier analysis (SFA) technique is applied to data on 30 plants over two year period from 2016 to 2017. The study finds that technical efficiency scores varies from 0.44 to 0.98 across power plants. About 33 percent of the plants have scores below the mean technical efficiency score of 0.87. Empirical results indicate ownership and use of solar photovoltaic (PV) have an influence on improving efficiency levels. Privately owned power plants in resort islands obtained higher technical efficiency scores compared to public and community owned power plants. This is a significant finding as the first study that used power plants in tourist sector in a comparative study. Size of the power plants was not found significant, but relatively small installed capacities can also be efficient. This finding is important because in many inhabited islands installed capacities remain oversized compared to the load. The benchmarking exercise offers model power plants that are relatively efficient, for other power plants and policy makers in small islands to learn from.
본 연구는 우리나라의 1990-2014년 시계열 자료를 활용하여 물 효율성, 경제성장, 전력생산 및 이산화탄소 배출 간의 장·단기 인과관계를 실증적 으로 분석하였다. 기존 연구들이 경제성장, 이산화탄소 배출 및 전력 및 에너지에 국한되어 분석을 한 반면 본 연구는 기존 변수들과 더불어 물 효율성과의 관계를 설명하였다는 기여를 가지고 있다. 실증분석결과를 살펴보면, 네 변수들은 단기조정관계를 통해 장기적으로 균형상태에 도달한다는 것과 변수들 간의 인과관계에서 이산화탄소 배출과 경제성장은 물 효율성의 원인이 되고 이산화탄소 배출과 경제성장 및 물 효율성은 전력생산의 원인이 된다는 사실을 발견하였다. 또한 물 효율성에 대한 장기 영향계수 추정결과를 통해 전력생산의 증가와 경제성장 및 이산화탄소 배출의 감소는 물 효율성을 증가시키며, 일정 수준 이상의 경제성장은 물 효율성의 증가속도를 감소시킨다는 경제성장과 물 효율성의 역U자형 관계를 확인하였다.
Climate change, in particular temperature change, has an impact on the demand for heating and cooling. This paper explores the effect of gradually warming climate on the demand for heating and cooling in Seoul during 1995-2014 using an autoregressive distributed-lag model, a family of timeseries econometric multivariate regression model. The estimated results reveal that there are two peaks in Seoul's electricity consumption because cooling degree days (CDD) and heating degree days (HDD) are statistically highly significant. CDD’s regression coefficient for a short and long-run model is approximately twice bigger than HDD’s and the summer peak is more important in terms of electricity consumption in Seoul. Furthermore, there exists a long-run relationship between electricity consumption and the explanatory variables such as economic growth, CDD, HDD, seasonal dummies, and black out dummy.
본 연구에서는 전력·통신 시설에 대한 화산재 취약도를 평가하였다. 해당 사회기반시설에 대한 한계상태는 전력시설의 섬락과 통신장애의 발생으로 설정하였다. 화산재 취약도를 평가하기 위하여 임의의 화산재 퇴적두께와 전력·통신 시설물 저항 성능의 통계치로부터 한계상태를 산정할 수 있는 몬테카를로 모사(Monte Carlo Simulation)모형이 개발되었다. 본 방법론을 적용하여 전력시설 3종과 통신시설 2종의 화산재 취약도가 평가되었으며, 평가된 화산재 취약도는 대수정규누적분포함수(Lognormal Cumulative Distribution Function)의 모수 형태로 데이터베이스화되었다. 본 연구에서 평가된 전력·통신 시설의 화산재 취약도는 향후 백두산 분화로 발생할 수 있는 화산재 퇴적피해를 대비한 국내 사회기반시설의 위험도 평가 시 활용될 계획이다.
Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC’s performance.. The order of maximum power density was 913 mWm-2 for Zn, 646 mWm-2 for Fe, 387.8 mWm-2 for Cu, 266 mWm-2 for Al, and 127 mWm-2 for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.
This research performed physico-chemical analysis of MSW(municipal solid waste) for design and operation ofgasification generation system. The MSW sample was analyzed by proximate, ultimate, heat value method and sampledeach residential type classified apartment, house, urban and rural in by seasonal generation According to statistics of 2010MSW generation in Korea, On average, Namwon generated about 101.4 ton of trash and recycled almost 57.5 ton ofthis material per day, equivalent to a 56.7 percent recycling rate. It was recycled 0.73 kilograms out of individual wastegeneration of 1.29 kilograms per person per day. In 2011, On average, Namwon generated about 46.7 ton without recycledmaterial per day, and individual generation was 0.60 kilograms. It was virtually identical with statistics data in 2010. Inthe physico-chemical analysis results, it was composed of 84.1 percent of combustible and 15.9 percent of Non-combustible. On average, heat value was 2,529kcal per kilogram in condition of LHV and wet. The MSW sample wasincluded 32.0 percent of moisture, 21.9 percent of ash, 26.8 percent of carbon, 14.4 percent of oxygen, 3.7 percent ofhydrogen and 1.3 percent of others. Estimate of technical potential energy of MSW was 1,278 toe per year, equivalentto a 33.3 percent of total potential energy.
Sediment cell is renewable energy which produces electric energy using immanent ingredients or reducing power of marine sediment as natural resources. Also the cell has an advantage that environmental pollution can be reduced through conversion of organic and inorganic contaminants into inert matter with generation of the energy. In this paper, we compared characteristics of electricity generation of the two different sediment cells, and investigated the regeneration effect of the sediment cells with manipulation of the sediment such as mixing and re-positioning. The results showed that 14.1 W/m2 of power was obtained with the aluminum electrode, and the mixing of the sediment could increase the power by 4 W/m2 compared to the control. Also, mixing the sediment has kept electricity for 4 weeks at a relatively constant level, which implied ‘fuel regeneration effect'. Meanwhile, the sediment cell was proved to be effective in reduction of COD, which was up to 28.6%.
토크쉬어볼트의 토크계수는 환경요인에 의해 영향을 받는다. 습기, 녹, 시공중의 작업성 등. 토크쉬어볼트의 토크계수의 변동에 기인하여 볼트에 도입된 축력을 예측하는 매우 어렵다. 이런 이유로 시공중인 볼트 축력을 측정하고, 체결력을 검증하는 것은 필수적이다. 이 연구에서, 볼트에 도입된 하중을 확인하기 위해 시작품 제작이 계획되었다. 시작품의 알고리즘은 토크쉬어 전동렌치에서 얻은 전기에너지와 유압축력기에서 얻은 축력과의 상관관계를 구성한 것이다. 직접축력을 계측하는 회귀분석식은 미니탭 프로그램을 이용한 통계학적인 분석방법에서 구한 것이다. 이 시작품은 상용 토크렌치에 견줄만한 인장력을 평가하는 신뢰성이 있는 도구라고 판단된다.