The development of high specific surface area and mesoporous activated carbons is required to improve the electrochemical performance of EDLC. In this study, kenaf-derived activated carbons (PK-AC) were prepared for high-power-density EDLC via phosphoric acid stabilization and steam activation. The pyrolysis behavior of kenaf with respect to the phosphoric acid stabilization conditions were examined via TGA and DTG. The textural properties of PK-AC were studied with N2/ 77 K adsorption–desorption isotherms. In addition, the crystalline structure of PK-AC was observed via X-ray diffraction. The specific surface area and mesopore volume ratio of PK-AC were determined to be 1570–2400 m2/ g and 7.7–44.5%, respectively. In addition, PK-AC was observed to have a high specific surface area and mesopore volume ratio than commercial coconut-derived activated carbon (YP-50F). The specific capacitance of PK-AC was increased from 77.0–99.5 F/g (at 0.1 A/g) to 49.3–88.9 F/g (at 10.0 A/g) with activation time increased. In particular, K-P-15-H-9–10 observed an approximately 35% improvement in specific capacitance at a higher current density of 10.0 A/g compared to YP-50F. As a result, the phosphoric acid stabilization method was confirmed to be an efficient process for the preparation of high specific surface area and mesoporous biomass-derived activated carbons, and the kenaf-derived activated carbons prepared by this process have great potential for application as electrode active materials in high-power EDLC.
It is addressed that the challenges of poor cyclic stability and low conductivity in metal–organic frameworks (MOFs) hinder their application in energy storage. Here, we synthesized binary metal MOFs through a one-step hydrothermal process, subsequently calcined to produce Co–Mn/reduced graphene oxide (rGO). This approach not only carbonized the organic framework but also enhanced its electrical conductivity and stability. Our findings demonstrated that the synergistic effects of Co and Mn within the assembled electrode resulted in remarkable performance, achieving a specific capacitance of 3558.65 F g− 1 at 1 A g− 1 and a rate capability of 1000 F g− 1 at 30 A g− 1. The Co–Mn/rGO anode in the asymmetric supercapattery exhibited a broadened operating potential window of 1.5 V, delivering an energy density of 54.65 W h kg− 1 at a power density of 125 W kg− 1, and maintaining 11.375 W h kg− 1 at a high power density of 12,500 W kg− 1. Notably, the capacitance retention rate reached 99.99% after 10,000 cycles at a current density of 10 A g− 1. These results suggest that the developed Co–Mn/rGO composite represents a promising candidate for advanced energy storage systems, offering both high performance and stability.
The thermal management of high-density electronics within military shelters is a critical challenge for ensuring operational reliability, particularly under harsh field conditions involving significant solar radiation. This study presents a numerical investigation using three-dimensional Computational Fluid Dynamics (CFD) to optimize an air-cooling system for an electronics rack housed in a military shelter. Four distinct cooling configurations were analyzed and compared: (1) a baseline model relying on natural convection, (2) a fan-assisted forced convection model, (3) a direct cold air supply model using an insulated duct, and (4) a hybrid model integrating both fans and the duct. Boundary conditions were established based on the high temperature and solar radiation criteria of the MIL-STD-810G standard. To quantitatively evaluate the cooling efficiency of each system, a normalized performance index derived from a weighted sum of the average temperature and temperature standard deviation was employed. The results demonstrate that the baseline configuration leads to critical overheating, with component temperatures reaching up to 124℃. In contrast, the hybrid fan-duct system exhibited the most superior performance, effectively reducing the maximum temperature to 59℃. This is attributed to a powerful synergistic effect, where the qualitative supply of low-temperature air via the duct is combined with the quantitative distribution of flow rate throughout the system by the fans. This study elucidates an effective thermal management strategy for electronics in military shelters exposed to severe environments, identifying the integrated fan-duct system as the most robust and optimal air-cooling solution.
This study is a fundamental investigation aimed at applying HDPE(High-Density Polyethylene), a promising alternative to FRP(Fiber-Reinforced Plastic) commonly used in hull structures, to hulls and marine structures. HDPE is well-suited for marine environments due to its excellent durability, chemical resistance, light weight, and recyclability; however, reliable joining techniques for large-scale structures remain insufficient. This research analyzes the effect of extrusion-based throughput rate conditions on weld quality. BoP(Bead-on-Plate) welding experiments were conducted using HDPE welding wire under throughput rates ranging from 0.2 to 0.7 g/sec, evaluating variations in bead shape and weight. The results showed significant changes in bead dimensions according to throughput rate, suggesting that the findings can serve as a basis for deriving optimal conditions to ensure joint quality.
Gas sensors play a crucial role in monitoring harmful gas concentrations and air quality in real-time, ensuring safety and protecting health in both environmental and industrial settings. Additionally, they are essential in various applications for energy efficiency and environmental protection. As the demand for hydrogen refueling stations and hydrogen fuel cell vehicles increases with the growth of the hydrogen economy, accurate gas concentration measurement technology is increasingly necessary given hydrogen's wide explosion range. To ensure safety and efficiency, gas sensors must accurately detect a wide range of gas concentrations in real-world environments. This study presents two types of gas sensors with high sensitivity, stability, low cost, fast response time, and compact design. These sensors, based on volume and pressure analysis principles, can measure gas filling amounts, solubility, diffusivity, and the leakage of hydrogen, helium, nitrogen, and argon gases in high-density polyethylene charged under high-pressure conditions. Performance evaluation shows that the two sensors have a stability of 0.2 %, a resolution of 0.12 wt・ppm, and can measure gas concentrations ranging from 0.1 wt・ppm to 1400 wt・ ppm within one second. Moreover, the sensitivity, resolution, and measurement range of the sensors are adjustable. Measurements obtained from these sensors of gas filling amounts and the diffusivity of four gases showed consistent results within uncertainty limits. This system, capable of real-time gas detection and characterization, is applicable to hydrogen infrastructure facilities and is expected to contribute to the establishment of a safe hydrogen society in the future.
This study investigates the changes in the surface characteristic, electrical and mechanical properties of copper foils electrodeposited in electrolytes with added various additives (Janus Green B (JGB), 3–mercapto–1–propane sulfonic acid (MPSA), Polyethylene glycol (PEG) and Chloride ion) under high current density. The main effect of additives on these properties was analyzed. In the group with added JGB, the crystal size on the surface became finer, and a homogeneous surface was observed. However, dented areas were observed, which decreased with an increase in chloride ions. When 100 ppm of PEG and 10 ppm of JGB were added, the fine dents on the surface increased. When a certain amount or more of additives were added, defects on the surface occurred due to competition between additives. The addition of JGB induced crystal growth in the direction of the (111) plane. Copper foils with excellent yield strength, tensile strength, and elongation could be obtained with an appropriate crystal size. The addition of JGB mainly affected crystal size and the direction of crystal growth, which is an important factor for controlling mechanical properties. PEG mainly affected elongation, and chloride ions had a primary effect on surface roughness, resistivity, and corrosion rate. Therefore, controlling additives is an effective way to significantly affect the manufacture of copper foil and produce various suitable properties in high demand.
In this study, in order to develop an eco-friendly filtration method that considers the health and safety of the aquatic ecosystem by differentiating it from chemical methods (coagulants, oxidants, etc.), which are mainly used as methods for managing the removal of algae in the algal bloom stage, an effective separation membrane for algae removal was reviewed, an appropriate technology was proposed through field application, and the effect of algae removal was evaluated. The membrane used was applied in the field by constructing an optimal technology through auxiliary facilities with an immersion tubular membrane and a pressurized tubular membrane resistant to adhesive pollutants and algae. As a result, the strong characteristics of Fouling (blocking) by adhesive algae were confirmed, and the effect of removing algae and particulate matter in the immersion type tubular membrane was 99% chlorophyll-a (Chl-a), 99.2% suspended solid (SS), and 96.7% of pressurized tubular membranes, showing excellent effects in removing algae and particulate organic matter. In addition, as a result of field application to eutrophic reservoirs where high-density algae are distributed, it was confirmed that stable operation of algae was possible during the process of filtering, separation, and concentration.
연안에서 주로 사용하고 있는 파워보트(Power boat)와 워크보트(Work boat)는 주로 섬유강화플라스틱(Fiber reinforced plastic, 섬유 강화플라스틱)을 주재료로 제작됐으나 2000년대에 들어오면서 섬유강화플라스틱 선체에 대한 환경오염 및 해양 안전에 관한 법규 규제가 강화로 규제되고 있다. 즉, 섬유강화플라스틱은 재활용할 수 없으며 폐기 시 자연에서 분해되는 데 100년 이상 걸리는 매우 반환경적 특 성이 있다. 고밀도폴리에틸렌(High density polyethylene) 소재 적용 선박은 기존의 섬유강화플라스틱 선박에 비해 가벼워 부력이 높고, 내충 격성이 뛰어날 뿐 아니라 유해 물질 발생이 없으므로 폐선 시 100% 재활용이 가능하다. 최근 친환경 소형 선박 소재로 주목받고 있고, 국 내 연해에 항해하는 중, 소형 선박의 선체용 소재로 활용 가치가 높을 것으로 기대되고 있다. 연구에서는 고속 경구 조선 기준에 만족하 는 구조 강도 안전성을 검토하였고, 상세 유한요소모델링 기반으로 항복강도 및 좌굴강도를 검토하였다. 외력 작용 시 선체와 연결된 선 루 구조 강도를 종합적으로 검토하기 위하여 상세 모델링이 적용되었고, 구조해석 결과 적용 시 선저판 두께를 150% 증가시키는 변경을 반영하였다. 하중조합 별 각 패널에서의 좌굴강도 평가를 수행하였으며, 연구에서 수행한 주요 절차들은 향후 고밀도폴리에틸렌을 소재 로 한 중, 소형 선박의 구조 안전성 평가 시 좋은 참고 자료가 될 것으로 기대된다.
Background: As the number of households raising companion dogs increases, the pet genetic analysis market also continues to grow. However, most studies have focused on specific purposes or native breeds. This study aimed to collect genomic data through single nucleotide polymorphism (SNP) chip analysis of companion dogs in South Korea and perform genetic diversity analysis and SNP annotation. Methods: We collected samples from 95 dogs belonging to 26 breeds, including mixed breeds, in South Korea. The SNP genotypes were obtained for each sample using an Axiom™ Canine HD Array. Quality control (QC) was performed to enhance the accuracy of the analysis. A genetic diversity analysis was performed for each SNP. Results: QC initially selected SNPs, and after excluding non-diverse ones, 621,672 SNPs were identified. Genetic diversity analysis revealed minor allele frequencies, polymorphism information content, expected heterozygosity, and observed heterozygosity values of 0.220, 0.244, 0.301, and 0.261, respectively. The SNP annotation indicated that most variations had an uncertain or minimal impact on gene function. However, approximately 16,000 non-synonymous SNPs (nsSNPs) have been found to significantly alter gene function or affect exons by changing translated amino acids. Conclusions: This study obtained data on SNP genetic diversity and functional SNPs in companion dogs raised in South Korea. The results suggest that establishing an SNP set for individual identification could enable a gene-based registration system. Furthermore, identifying and researching nsSNPs related to behavior and diseases could improve dog care and prevent abandonment.
The objective of this study was to achieve biological control of green mold disease in Pyogo mushrooms using antagonistic microorganisms. Bacillus subtilis BSM320 cells inhibited mycelial growth by 48–60% against three Trichodermaisolates including T. hazianumisolated from the substrates of Lentinula edodes, showing their antifungal activity.The bacteria were cultured to a high density of 4.2 x 109±113.7 cfu/mlin aqueous extract of composted spent mushroom substrates of L. edodes containing 1% glucose and showed a higher growth rate than that observed when using the commercial medium, Luria-Bertani broth. The bacterial culture showed a 75% protective effect without damaging the mushroom fruiting bodies. These results suggest that B. subtilis BSM320culture is suitable for biological control of green mold disease during mushroom cultivation.
The purpose of this study is to present the direction of the plan to transform the residential complex into a space that can provide an open residential environment that can lead to social communication and exchange without being closed to the urban residential environment, especially in the apartment complex environment, which is becoming more dense. As a result of the Openness analysis of the ‘Codan Shinonome Canal Court’, the overall accessibility was good in terms of space utilization, and the openness was low in terms of the spatial composition, which is a physical environment due to the dense block type. When looking at the overall openness of the Codan Sinonome complex in terms of analysis by block, the corrected openness index (C.O.I) for all six blocks was 0.245, the corrected accessibility index (C.A.I) was 1.447 and the openness composite index (O.C.I) was assessed at 1.692. This was due to the formation of high-density block-type urban dwellings and the introduction of S-shaped streets and the layout of low-rise urban support facilities and commercial facilities. The Codan Sinonome Canal Court, which is considered an “open city residence,” quantitatively confirmed that it embodies macro-space structure and human-scale space environment even in high-precision environments.
Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 oC and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ΔGmax < ΔGc ≤ ΔGseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 oC is ΔGc < ΔGmax, and single crystals are not grown.
본 연구는 고밀도폴리에틸렌 코편을 마스크에 적용 후 MRI 검사에 사용하여 SNR의 변화를 측정하고 만족도를 평가하였다. 연구 방법은 팬텀을 이용하여 HDPE 마스크 적용 전 후의 SNR 측정과 KF 94 마스크 적용 전 후의 SNR 측정을 하였고, 사용한 기법은 T1WI, T2WI, DWI였다. 또한 HDPE 마스크 착용군의 T2 mDixon, 3D T1영상 획득 후 안와와 교뇌의 SNR을 측정하였고, 설문을 통하여 MRI 검사 시 답답함 정도와 호흡의 용이성, HDPE 마스크의 선호도 평가를 하였다. 팬텀 실험 결과 HDPE 마스크 사용 전과 후의 SNR은 유의한 차이가 없었으며(p>0.05), KF 94 마스크는 적용 전 값과 유의한 차이가 있었다(p<0.05). HDPE 마스크 착용군의 SNR 측정 결과에서는 미착용군과 유의한 차이는 없었다(p>0.05). 마스크 착용 후 답답한 정도 측정 결과 착용군은 3.53 ± 0.73, 미착용군은 3.83 ± 0.75이었고, 호흡의 용이성 측정 결과 HDPE 마스크 착용군은 3.1 ± 0.89, 미착용군은 3.27 ± 0.91으로 나타났고, 두 조사 결과 모두 유의한 차이는 없었다(p>0.05). HDPE 마스크의 선호도는 4.48 ± 0.54으로 선호도가 높은 것으로 나타났다. 본 연구 결과 HDPE 마스크는 착용 후에도 MRI 영상의 신호 변화 없이 정확한 검사가 가능하고 환자의 만족도 또한 높게 평가되었기에 검사 중 호흡기 감염 예방을 위해 적극적으로 사용되어야 할 것으로 사료된다.
The current density in copper electroplating is directly related with the productivity; then, to increase the productivity, an increase in current density is required. This study is based on an analysis of changes in surface characteristics and mechanical properties by applying the addition of Alcian Blue (AB, C56H68Cl4CuN16S4). The amount of Alcian Blue in the electrolytes is changed from 0 to 100 ppm. When Alcian Blue is added at 20 ppm, a seed layer is formed homogeneously on the surface at the initial stage of nucleation. However, crystals electroplated in electrolytes with more than 40 ppm of Alcian Blue are observed to have growth in the vertical direction on the surface and the shapes are like pyramids. This tendency of initial nucleation formation causes protrusions when the thickness of copper foil is 12 μm. Thereafter, a lot of extrusions are observed on the group of 100 ppm Alcian Blue. Tensile strength of groups with added Alcian Blue increased by more than 140% compare to no-addition group, but elongation is reduced. These results are due to the decrease of crystal size and changes of prior crystal growth plane from (111) and (200) to (220) due to Alcian Blue.