Radioactive waste can be classified according to the concentration level for radionuclides, and the disposal method is different through the level. Gamma analysis is inevitably performed to determine the concentration of radioactive waste, and when a large amount of radioactive waste is generated, such as decommissioning nuclear facilities, it takes a lot of time to analyze samples. The performance of a lot of analysis can cause human errors and workload. In general, gamma analysis is performed using by HPGe detector. Recently, for convenience of analysis, commercial automatic sample changers applicable to the HPGe detectors were developed. The automatic sample changers generate individual analysis reports for each sample. In this study, gamma analysis procedure was improved using the application of the automatic sample changer and the automated data parsing using by Python. The application of automatic sample changers and data parsing technique can solve the problems. The human errors were reduced to 0% compared to the previous method by improving the gamma analysis procedure, and working time were also dramatically reduced. This automation of analysis procedure will contribute to reducing the burden of analysis work and reducing human errors through various improvements.
본 연구의 목적은 과거 12년(2010~2021년)간 발생한 상선의 충돌사고 668건을 조사하여 충돌의 원인요인을 조사하고 이를 통계 적으로 분석하여 항해사의 인적과실 예방 충돌회피(HEPCA) 모델을 제안하는 것이다. 중앙해양안전심판원의 통계연보 및 충돌사건 재결서 를 조사하여 상선의 충돌 원인요인 데이터를 수집하고 통계분석 도구인 SPSS를 이용하여 빈도분석을 수행하였다. 1단계 분석으로 상선 충 돌사고 668건을 대상으로 충돌원인을 분석하였고, 2단계 분석에서는 식별된 최대빈도 원인요인을 세부적으로 분석하였다. 분석결과, 충돌 원인은 항해사의 인적과실이 98 %인 것으로 식별되었으며, 빈도 높은 요인 순서는 경계소홀 〉항행법규위반 〉조선 부적절 순이었다. 경계 소홀의 원인 요인은 주로 상대선 초인 후 지속감시 소홀이었으며 상대선박의 존재를 인식하지 못한 원인은 주로 당직시간에 다른 작업을 한 요인이었다. 분석결과를 적용하여 인적과실 예방을 위한 HEPCA 모델을 제안하였고, 이를 재결서의 충돌사건에 적용해보았다. 본 연구결과는 해기사 교육기관 및 실무에서 항해사의 인적과실로 발생하는 충돌사고를 방지하기 위한 교육 자료로 활용이 가능할 것으로 기대된다.
Despite the maritime industry’s significant role in the global economy, maritime accidents are a threat to life at sea and maritime economic performance. Furthermore, the human factor still accounted for as the main factor causing maritime accidents. Every year, many maritime accidents occur in Japan and Hong Kong, with collisions being the most common. In this study, Human Error Assessment and Reduction Technique (HEART) method is applied to the collisions data to identify the common mistakes committed by seafarers by determining the generic task, error-producing conditions and the value of Human Error Probability (HEP). This study aims to find the causes of collision in Japan and Hong Kong, compare them between the two countries, and apply HEART methodology to various maritime accidents. The data was sourced from the maritime accident data report of the Japan Transportation and Safety Board and the Government of the Hong Kong Special Administrative Region of the Marine Department from 2008 to 2016. There are 27 collision cases for Japan and 21 for Hong Kong. In general, human error is the most common factor leading to collisions. In conclusion, in Japan’s collision assessment, fairly simple tasks performed rapidly or with scant attention are identified as the most common generic task. However, in Hong Kong, most of the accidents occur during complex tasks. Japan has 101 EPCs for 27 cases while there are 115 EPCs for 21 cases that occurred in Hong Kong. Both Japan and Hong Kong have the time shortage, inadequate checking of progress, and poor information exchange among seafarers on the bridge as the common error-producing conditions occurred.
철도교통은 기술적, 사회적, 문화적 환경의 변화 및 고속철도의 확장과 철도 구조개혁 등으로 현장에서의 인적요인으로 인한 오류가 증가로 안전을 위협하는 요소가 날로 증가하는 추세로 안전신뢰성 확보는 절대적이다. 따라서 인적오류를 근절하기 위한 안전시스템의 적정성 및 신뢰도에 대한 분석과 해외 선진철도의 안전정책 및 안전시스템의 변화와 발전 추세를 분석하여 국내 철도안전의 방향을 제시하고자 한다.
According to the statistics, occupational fatal injuries by the fork lifts were about 30 per year in whole industrial. Fork lifts are widely used in various parts of industries to improve the efficiency of the work. In this study, the current regulations to be adequate in industrial site have to be renew in order to prevent the fatal injuries by the fork lifts.
Fatal injury analysis were conducted with several accident cases by the fork lifts. For each accident, the causes of the injuries were examined and proper safety measures were proposed.
In this study, the fork lift showed a high fatality rate in industrial accidents and no detailed cause analysis of fatal accidents was conducted in terms of unsafe acts or conditions.
First, fork lifts were the highest of the machines caused the accidents. In order to prevent fatal injuries by the fork lifts, the tarket was manufacturing industry. Second, the order of the cause of cognitive engineering agenda in the manufacture industrial was visibility, responsibility and affordance, and revision of acts was proposed. Third, there was not a lots of different points of human error between occurrence types and business sizes. Forth, number of fatalities by the attacker was more than by the inducer.
According to the statistics, occupational fatal injuries by mobile cranes were about 12 per year in whole industrial. Mobile cranes are widely used in various parts of industries to improve the efficiency of the work. However considerable number of fatal injuries happen each year during the operation of the machines. In this study, the current regulations to be adequate in industrial site have to be renew in order to prevent the fatal injuries by mobile cranes. Fatal injury analyses were conducted with several accident cases by the mobile cranes. For each accident, the causes of the injuries were examined and proper safety measures were proposed. In this study, the mobile crane showed a high fatality rate in industrial accidents and no detailed cause analysis of fatal accidents was conducted in terms of unsafe acts or conditions. This study proposed a revision of the standard guideline as an accident prevention measures through in-depth analysis of fatal accidents. First, among the mainly five machines caused the accidents, mobile crane was higher for the second showed 0.6% for number of fatalities compared to number of mobil cranes and for the third showed 11% for number of fatalities compared to number of injuries. Second, main cause of cognitive engineering agenda was visibility, responsibility, affordance. As the measures to prevent accidents before starting operation, alternative revision for the fool proof including visibility, responsibility, affordance etc. for the fool proof measures was proposed. Third, alternative revision as cognitive accident prevention for the fail safe measures was proposed.
본 연구에서는 10년간(2001 2010) IMCA에 보고된 DP 선박 LOP(Loss of Position)사고 612건에서 인적오류에 의한 사고 103건을 확인하여 이를 HFACS로 분류하였다. 그리고 이를 베이지안 네트워크에 적용하여 인적오류의 조건부 확률을 확인해 보았다. 그 결과 103건의 인적오류관련 사고는 모두 불안전한 행동에 의해서 발생하였고 이들 중 기술 기반 오류가 70건(68.00 %)으로 가장 큰 인적오류 비율을 차지하였다. 기술 기반 오류 중에서는 부주의한 DP 선박 운용 60건(58.3%), 절차 미 준수 8건(7.8%)이었고, 의사결정 오류에 의한 잘못된 조종이 21건(20.8%)을 차지하였다. 이러한 HFACS 분류의 베이지안 네트워크 적용을 통해서는 불안전한 감독(68%)이 불안전한 행동의 가장 큰 잠재적 요인으로 작용하고 있다는 것을 확인 할 수 있었다. 결론적으로 HFACS와 연계한 베이지안 네트워크는 인적오류를 분석하는 데 유용한 도구임을 확인 할 수 있었고, 분석 결과를 바탕으로 DP 선박안전 운용을 위한 정책, 내부 관계, 훈련등과 같은 인적오류를 경감 및 제거하기 위한 권고 9가지를 제안하였다.
Occupational fatal injury rate per 10,000 population of Korea is still higher among the OECD member countries. To prevent fatal injuries, the causes of accidents including human error should be analyzed and then appropriate countermeasures should be established. There was an severe converter furnace accident resulting in five people death by chocking in 2013. Although the accident type of the furnace accident was suffocation, many safety problems were included before reaching the death of suffocation. If the safety problems are reviewed throughly, the alternative measures based on the review would be very useful in preventing similar accidents. In this study, we investigated the converter furnace accident by using human error analysis and accident scenario analysis. As a result, it was found that the accident was caused by some human errors, inappropriate task sequence and lack of control in coordinating work by several subordinating companies. From the review of this case, the followings are suggested: First, systematic human error analysis should be included in the investigation of fatal injury accidents. Second, multi man-machine accident scenario analyis is useful in most of coordinating work. Third, the more provision of information on system state will lessen human errors. Fourth, the coordinating control in safety should be performed in the work conducting by several different companies.