목적 : 적외선 차단렌즈의 근적외선 차단율과 시감투과율을 제조방식 및 근적외선 차단제 첨가 여부에 따라 조 사하고, 근적외선 차단렌즈의 개발 방향에 대하고 논하였다. 방법 : 시중에서 유통되고 있는 국내외 브랜드의 근적외선 차단렌즈 20종(C-type 10종, M-type 5종, TMtype 5종)을 대상으로 가시광선에서 근적외선에 이르는 380~1,400 nm 영역에서 5 nm 간격으로 투과율을 측정한 후, KS B ISO 13666 표준에 따라 근적외선 차단율과 시감투과율 구하였다. 결과 : 근적외선 차단율은 TM—type이 평균 62.3%로 가장 우수하였지만, 착색렌즈에 미러코팅을 한 관계로 시 감투과율은 평균 20.2%로 매우 낮았다. M—type의 경우는 근적외선 차단제의 첨가로 인한 근적외선 차단효과가 명확하게 나타나기는 했지만, 근적외선 차단제를 첨가하지 않은 C-type의 렌즈의 근적외선 차단율보다 그 성능이 떨어졌고, 시감투과율 또한 낮았다. 근적외선 차단제가 첨가되지 않은 C-type의 렌즈들에서 근적외선 차단율은 우 수하였을 뿐만 아니라, 시감투과율 또한 무반사 렌즈 수준으로 높게 나타났다. 결론 : 최적화된 코팅설계가 적용되면 AR 렌즈 수준의 높은 시감투과율을 보이면서 TM-type의 근적외선 차단 율을 능가하는 우수한 근적외선 차단렌즈를 개발할 수 있다는 점에서 근적외선 차단렌즈의 설계 방향은 C-type이 가장 효과적이라 할 수 있다.
In this study, infrared thermometry techniques were used to conduct surface wetting performance tests (wicking tests) on micropillar structures with good fluid supply capabilities to enhance the critical heat flux. Wicking tests were conducted based on various micropillar shapes (i.e., diameter and spacing) to investigate the surface wetting performance near the boiling point of the fluid(~100°C). The surface temperature was increased from 20°C to 95°C, to examine the wicking performance The shape of the micropillars were quantified by the roughness and the effect of the roughness and temperature on the wicking performance was analyzed. As a result, we confirmed that the roughness of the micropillars increases the capillary pressure, improving the wicking performance. The sample D04 G10 with the highest roughness coefficient at room temperature (r=2.51) exhibited the highest wicking coefficient, showing a 170% improvement in wicking performance compared to D04G20 with the smallest roughness coefficient at room temperature(r=1.51). Additionally, the D04 G10 sample (r=2.51) recorded a 50% improvement in the wicking coefficient at the highest temperature(95°C) compared to room temperature(20°C). The wicking coefficient data will be utilized as a database for developing a new correlation for critical heat flux.
Owing to the rapid rise of global energy demands, the operation of nuclear power plants is still indispensable. However, following the nuclear accident at Fukushima-Daiichi in 2011, the secure sequestration of radioactive waste has become critical for ensuring safe operations. Among various forms of nuclear wastes, capturing radioactive organic iodide (ROIs, e.g., methyl iodide, ethyl iodide, and propyl iodide) as one of the important species in gas phase waste has been challenged owing to the insufficient sorbent materials. The environmental release of ROIs with high volatility can give rise to adverse effects, including the accumulation of these substances in the thyroid and the development of conditions such as hypothyroidism and thyroid cancer. Compared to an iodine molecule, ROIs exhibit low affinity for conventional sorbents such as Ag@mordenite zeolite and triethylenediamine-impregnated activated carbon (TED@AC), resulting in lower sorption rates and capacities. Furthermore, in conditions resembling practical adsorption environments with high humidity, the presence of H2O significantly impedes the adsorption process, leading to a nearly complete cessation of adsorption. To address these issues, metal-organic frameworks (MOFs) can be effective alternative sorbents owing to their high surface area and designable and tailorable pore properties. In addition, the wellfined crystalline structures of MOFs render in-depth study on the structure-properties relationship. However, there has been limited research on the adsorption of ROIs using MOFs, with the majority of adsorption processes relying on highly reversible physisorption. This type of ROIs adsorption not only exists in a precarious state that is susceptible to volatilization but also exhibits significantly reduced adsorption capabilities in humid environments. Thus, for the secure adsorption of the volatile ROIs, the development of sorbents capable of chemisorption is highly desirable. In this study, we focused on ROIs adsorption by electrophilic aromatic substitution with the electron-rich m-DOBDC4− (m-DOBDC4− = 4,6-dioxo-1,3-benzenedicarboxylate) present in Co2(m -DOBDC). The chemisorption of ROIs via electrophilic aromatic substitution not only leads to the formation of C-C bonds, ensuring stability but also triggers color changes in the crystal by interacting with open-metal sites and iodide ions. Leveraging these advantages, we developed an infrared radiation-based sensing method that demonstrates superior performance, exhibiting high adsorption capacities and rates, even under the challenging conditions of high-humidity practical environments.
This study presents a method for analyzing the surface temperatures of specific facilities, such as the 5 MWe reactor within the Yongbyon Nuclear Complex, to explore its potential utility in monitoring suspected nuclear-related activities in North Korea using thermal infrared (TIR) satellite imagery (Landsat series). TIR band data is utilized to derive surface temperatures in the specified areas, and the temperatures are analyzed on a monthly basis to examine any patterns within these regions. This research provides a pattern-of-life on temperature variation for the target areas through multiple TIR image datasets, offering additional information to analyze facilities’ operational status in remote and inaccessible regions.
Fulvic acid, a humic substance with unique properties, has sparked interest due to its potential applications in the treatment of allergic diseases, Alzheimer's disease, and as a microplastic adsorbent. However, conventional extraction methods produce insufficient quantities for commercial use, which has prompted research to enhance fulvic acid production. In this study, we investigated the impact of Saccharomyces cerevisiae fermentation on the yield and spectral characteristics of fulvic acid extracted from white peat. Fulvic acid was extracted from both S. cerevisiae-treated and untreated white peats using acid precipitation. The yield of fulvic acid from the S. cerevisiae treated group reached its highest at 3.5 % after 72 hr of fermentation, which was significantly higher than the untreated group (1.1 %). Fourier Transform Infrared (FTIR) analysis revealed similarities in functional groups and characteristic absorption bands between the treated and untreated fulvic acid samples. These findings suggest that S. cerevisiae fermentation can increase the yield of fulvic acid extracted from white peat, providing a promising approach for enhancing the commercial viability of fulvic acid production.
Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanatebased glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 °C, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.
This experiment was conducted to confirm the possibility of preparing Sorghum×sudangrass hybrid artificial hay using far-infrared rays in Korea. The machine used in this experiment is a drying device based on far-infrared rays, and is designed to control temperature, air flow rate, far-infrared radiation amount, and air flow speed. The Sorghum×sudangrass hybrids harvested in late September were wilted in the field for one day, and a drying test was performed on them. Conditions for drying were performed by selecting a total of 7 conditions, and each condition induced a change in radiation amount in a single condition (42%) and two steps (4 treatments) and three steps (2 treatments). The speed of the air flow in the device was fixed at 60 m/s, and the run time was changed to 30, 60, and 90 minutes. The average dry matter (DM) content was 82.84%. The DM content was 59.94 and 76.91%, respectively, in drying conditions 1 and 3, which were not suitable for hay. In terms of drying rate, it was significantly higher than 80% in the 5, 6 and 7 treatment, and power consumption was slightly high with an average of 5.7 kw/h. As for the feed value according to each drying condition, the crude protein (CP) content increased as the drying time increased, and there was no significant difference between treatments in ADF, NDF, IVDMD and TDN content. In terms of RFV, treatment 1, which is a single condition, was significantly lower than the complex condition. Through the above results, it was determined that the drying conditions 4 and 5 were the most advantageous when considering the drying speed, power consumption, and quality.
We investigate infrared properties of OGLE4 Mira variables in our Galaxy. For each object, we cross-identify the AllWISE, 2MASS, Gaia, and IRAS counterparts. We present various IR two-color diagrams (2CDs) and period-magnitude and period-color relations for the Mira variables. Generally, the Mira variables with longer periods are brighter in the IR fluxes and redder in the IR colors. In this work, we also revise and update the previous catalog of AGB stars in our Galaxy using the new sample of OGLE4 Mira variables. Now, we present a new catalog of 74,093 (64,609 O-rich and 9,484 C-rich) AGB stars in our Galaxy. A group of 23,314 (19,196 O-rich and 4,118 C-rich) AGB stars are identified based on the IRAS PSC and another group of 50,779 (45,413 O-rich and 5,366 C-rich) AGB stars are identified based on the AllWISE source catalog. For all of the AGB stars, we cross-identify the IRAS, AKARI, MSX, AllWISE, 2MASS, OGLE4, Gaia, and AAVSO counterparts and present various infrared 2CDs. Comparing the observations with the theory, we find that basic theoretical dust shell models can account for the IR observations fairly well for most of the AGB stars.