Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.
Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentrationdependent manner and assessed Young’s modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.
In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 256 pixels (high resolution: HR) from TEM measurements and 32 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.
In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
레이저 주사 공초점 현미경은 비접촉, 비파괴적인 방법으로 수백 ㎚ 크기의 물질의 이미지를 관찰할 수 있다. 본 연구에서는 공초점 현미경을 이용하여 V₂O5 박막의 표면에 성장된 수백 ㎚ 크기의 나노로드를 관찰하였으며, 공초점 현미경의 파장 의존성을 확인하기 위해 동일한 위치에 대해 짧은 파장대인 405 ㎚와 긴 파장대의 633 ㎚의 레이저 광원을 사용하여 이미지를 구현하였다. 실험결과, 긴 파장인 633㎚의 광원을 사용한 이미지에서는 번짐 현상이 심해져 명암대비가 작아지고 나노로드의 경계를 명확하게 분해하지 못하였지만, 짧은 파장인 405 ㎚의 광원을 사용하면 명암대비가 커지고 나노로드의 이미지를 명확하게 분해할 수 있었다. 따라서 짧은 파장의 광원을 사용한 공초점 현미경은 주사전자현미경(SEM)을 대신한 새로운 나노구조의 측정방법으로 이용될 수 있을 것으로 기대된다.
Poor oral hygiene can cause severe periodontal disease. Therefore, it is necessary to educate individuals regarding the importance of maintaining good oral hygiene. To this end, in this study, we evaluated the efficacy of using a phase contrast microscope as an instructional tool for oral hygiene. Forty patients, randomly divided into test and control groups, were recruited 6 months after receiving oral prophylaxis. A phase control microscope was used as a demonstration tool for the test group, and a dentiform model was used to demonstrate the ideal tooth-brushing method for the control group. In the test group, awareness regarding the importance of proper oral hygiene was found to increase by 30%, and in the control group, awareness was increased by 20%. The overall satisfaction with the instructional program was 80% in the test and 70% in the control group. The level of understanding was 99% in the test and 80% in the control group. Instructions were easily followed by 80% of the test and 60% of the control group. Understanding of the program was significantly higher in the test group than in the control group (p < 0.05). The overall satisfaction and understanding of proper oral hygiene was over 70% for both the groups. The phase contrast microscope-based instructional program yielded higher actual practice rates. The phase contrast microscope is desirable tool for motivating patients and spreading awareness regarding the importance of maintaining good oral hygiene.
When developing a product, ensuring the quality and reliability is essential. Reliability process is always underestimated compared to its importance, especially in the field of domestic medical devices. In this paper, reliability process developed for near-infrared solid microscope, based on a variety of existing practices and other product process. The following findings were obtained as research progressed. First, learning about the medical equipment needed to assure the quality and reliability standards. Second, reliability process established to design a product in the field of medical devices
Measurement of surface roughness is an important metrology procedure widely used in the industry during the final phases of the manufacturing process for quality control. This paper presents a measurement system that uses an optical microscope equipped with a vision sensor to measure the surface roughness of bearings. Shape from Focus / Defocus method is applied to measure the 3D surface coordinates of the object surface from which roughness calculations can be undertaken.
This paper presents a method of measuring the 6 DOF motion of a micro object using images taken of interference fringes projected onto the object. Information from the fringe patterns allows for extracting the 6 DOF motion of the object in one image, allowing for real time measurement of the object's pose. This measurement technique is applied to a visual servo control scheme where the object's 6 DOF motion is controled. Experimental results of the developed system are presented.
Ensure the quality and reliability of the developing product should be considered essential. Reliability process is lacking compared to its importance, especially in the field of domestic medical devices. In this paper is Reliability process formulation ofnear-infrared solid microscope for ophthalmic surgery, based on a variety of existing practices and other product process to ensure product reliability, reliability process was established.Together domestic and international standards were investigated that essential in order to maintain a high level of reliability and quality. In this paper, the following findings were obtained. First, learned about the medical equipment needed to ensure quality and reliability standards. Second, reliability ensure process design and formulation were studied.
We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be 1000˚C and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.
현미경을 다루는데 있어 현미경의 원리를 이해하는 것은 매우 중요하다. 본 연구에서는 DVD optical pick-up head (이하OPH)를 활용하여 광경로를 직접 눈으로 볼 수 있어서 현미경 원리 파악에 도움이 되는 저렴한 가격의 현미경 시스템을 구현하였다. 실험 과정은 광원에서 나온 빛을 시료와 렌즈에 순차적으로 통과시키고, 이 정보를 CCD 카메라에서 검출하는 것으로 이루어졌다. DVD OPH 내부의 렌즈를꺼내어 두 렌즈의 상대적 거리에 따른 성능 차이를 알아보았다. 또한, 광원을 백색광원으로 실험한 결과와 반도체 레이저로 실험한 결과를 비교하여 광원에 따른 배율의 차이를 알아보았다. 그 결과 백색 광원일 때 반도체 레이저에 비해 해상도가 2배 이상 높았고, 현미경 시스템과 CCD 카메라의 거리가 20 cm일 때 약 150배의 배율을 보였다.
We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about 3.38~3.39a. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.
Bombus terrestris was released for pollination of apple flowers at apple orchards in Uileumgol, Milyang-sity, mid spring, 2008. Numbers of out-going bees and in-coming bees were 38heads at 10 a.m. and 23heads at 4 p.m., respectively. 75% bees per total in-coming bees collected the pollens about 10 a.m. and 63% bees per total in-coming bees collected the pollens around 4 p.m.. The SEM photography(A) showed that 82.7% of a pollen load were collected on apple flowers and 17.3% of a pollen load were collected from another plants and trees flowers. The another SEM photography(B) showed that 89.1% of a pollen load were collected on apple flowers and 10.9% of a pollen load were collected from another plants and trees flowers. Therefore these results show that B. terrestris mainly pollinates on the apple flowers but the bee seems to visit flowers of other plant species from time to time.
공초점 현미경은 시료를 물리적으로 절단하지 않고 살아있는 세포와 고정된 시료를 두께 100㎛ 범
위까지 측정하여 이미지화할 수 있는 유용한 장치이다.광원으로 파장이 488nm인 Ar-ion레이저를 사용하였으며,USAF 타겟,형광비드 및 고정된 세포에서는 배율이 60x이고 개구수(NA :NumericalAperture)가 1.25인 대물렌즈를,살아있는 세포 분열 관찰에는 배율이 25x이고,개구수가 0.40인 대물렌즈를 각각 사용하여 레이저 주사 공초점 현미경을 구성하였다.조리개를 통한 빛만을 PMT로 검출하여 여기파장이 505nm이고, 발광파장이 515nm인 1.1㎛인 형광비드와,파장이 488nm인 빔이 입사할 때 575nm 파장의 형광을 방출시키는 PE(Phycoerythrin)로 표지(label)한 약 10㎛ 크기의 쥐의 면역세포에 대한 정보를 얻어 Labview 프로그램을 이용하여 이차원 영상을 얻었다.그리고 AMIRA 프로그램을 사용하여 삼차원 영상을 얻었으며,PE로 표지한 쥐의 한 종류인 Balb/c의 피부 암세포 분열의 단면 동영상을 구현하였다.
공초점 레이저 형광 현미경은 시료의 관찰하고자 하는 층에 대한 정보만 얻을 수 있을 뿐만
아니라 세포에 형광물질을 발광시켜 세포의 내부 단면을 볼 수 있으므로 생명과학, 의학 등 다양한 분야
에 이용될 수 있다. 본 연구에서는 파장이 488 nm인 Ar-ion 레이저를 광원으로 사용하고, NA=0.75인
배율 60x인 대물렌즈를 사용하여 레이저 스캔 공초점 형광 현미경 시스템을 구성하여 PMT(photo
multiplier tube)를 통하여 파장이 505 nm의 빛이 입사되었을 때 515 nm 파장의 형광을 방출시키는 1.1
μm크기의 형광 bead 형상에 대한 정보를 얻어 Labview 프로그램으로 2차원 영상을 얻었다. 그리고
Avizo 프로그램을 사용하여 수집된 2차원 영상들을 포개는 방식으로 3차원 영상을 얻었다.
The domain structures of annealed (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x< 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred 110 planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of 001 oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along 001 the mm scale.
본 연구의 목적은 조암광물의 광학적 특징에 대한 웹 컨텐츠를 개발하고 적용하는데 있다. 개발된 웹 콘텐츠는 학습 목표와 교수 학습 내용을 명료하게 보여주고 학습 내용의 접근과 항목간의 이동을 원활히 하는 시스템을 구축하는 한편 중고등 학교 교과서에서 가장 많이 인용되는 8종의 조암광물에 대한 광학적 특징을 동영상과 사진으로 제시하여 학생들의 광물에 대한 이해도를 높였다. 개발된 웹 컨텐츠를 수업에 적용한 후 MALSM를 이용한 교수-학습 자료로서의 질적 수준과 학습 효과를 분석한 결과 대부분의 학생들은 수업목표, 학습내용, 수업전략, 화면구성, 이용의 편의성, 학습자료 항목에서 긍정적인 반응을 보였다. 웹 컨텐츠를 이용한 수업을 받은 학생 중에서 약 62%의 학생들이 편광현미경으로 박편상의 조암광물을 동정할 수 있었다.