Fluorescent bacteria were isolated from sporocarps that browned into various mushrooms during survey at places of the production in Korea. We examined the pathogenicity, biodiversity, and genetic characteristics of the 19 strains identified as Pseudomonas tolaasii by sequence analysis of 16S rRNA and White Line Assay. The results emphasize the importance of rpoB gene system, fatty acid profiles, specific and sensitive PCR assays, and lipopeptide detection for the identification of P. tolaasii. As a result of these various analyses, 17 strains (CHM03~CHM19) were identified as P. tolaasii. The phylogenetic analysis based on the 16S rRNA gene showed that all strains were clustered closest to P. tolaasii lineage, two strains (CHM01, CHM02) were not identified as P. tolaasii and have completely different genetic characteristics as a result of fatty acids profile, specific and sensitive PCR, lipopetide detection, rpoB sequence and REP-PCR analysis. Pathogenicity tests showed 17 strains produce severe brown discolouration symptoms to button mushrooms and watersoaking of sporophore tissue within three days after inoculation. But two strains did not produce discolouration symptoms. Therefore, these two strains will be further investigated for correct species identification by different biological and molecular characteristics.
Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 °C. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.
To understand microorganism effects on wild mushroom fruiting bodies, we investigated the fungi in hyphosphere soil supporting wild mushroom species Cortinarius violaceus, Amanita hemibapha, Laccaria vinacelavellanea, and Amanita verna found in the Gotjawal area of Jeju Island. Fungal species identification based on morphological traits and molecular analysis of ITS, LSU rDNA, and -tubulin gene sequences resulted in isolation and identification of eleven fungal species previously unrecorded in Korea. These newly-recorded species are: Arthrinium kogelbergensis, Kalmusia longisporum, Keithomyces carneum, Neopyrenochaeta cercidis, Penicillium ranomafanaense, Phomatodes nebulosa, Pyrenochaeta nobilis, Tolypocladium album, Talaromyces kendrickii, Talaromyces qii, and Umbelopsis gibberispora, and their morphological characteristics and phylogenetic positions are described.
The consumption of enoki mushrooms has been associated with cases of listeriosis produced by Listeria monocytogenes, highlighting the significance of sanitizing food-contact surface, such as the velcro used in welding processing of enoki mushrooms, to ensure microbial safety. We investigated the inhibitory activity of nine chemical disinfectants at regular concentrations against L. monocytogenes isolated from a mushroom farm environment. The bacterial suspension was prepared in phosphate buffered saline and mushroom extract broth and inoculated onto the velcro surface. After inoculation, most disinfectants reduced the initial 8 log CFU/coupon concentration by less than 2 log CFU/coupon during a 5-min treatment. Slightly acidic hypochlorous water showed a reduction of approximately 4 log CFU/coupon when tested for more than 30 min at the maximum allowable concentration of 200 mg/L. Sodium hypochlorite solution showed a reduction of approximately 5 log CFU/coupon when used at 100 mg/L for 60 min. Peracetic acid, at the maximum allowable concentration of 300 mg/L, showed the most effective reduction of 5 log CFU/coupon or more when the surface was treated with 37.5 mg/L for 30 min. These results indicate that peracetic acid can be used as the disinfectant strategy to control cross-contamination of L. monocytogenes on the velcro surface of plastic wrappers used in the welding processing of enoki mushrooms.
세계적으로 버섯에 대한 소비는 매년 증가하고 있으며 한국에서는 느타리버섯, 양송이버섯, 팽이버섯이 주로 유 통되고 있다. 하지만, 버섯의 재배와 가공 과정에서 미생 물 오염을 예방하기 위한 대안의 부재로 인하여 Listeria monocytogenes와 같은 병원성 미생물의 오염이 검출되고 있으며 버섯에 의한 식중독 및 리콜 사례가 다수 보고되 고 있다. 버섯에서 오염된 미생물을 저감화하는 방법으로 는 화학적 및 물리적 처리, 또는 이들을 결합하여 사용하는 병용처리 방법이 이용되고 있다. 화학적 처리로는 염소 혼 합물, 과산화아세트산, 4차 암모늄이온 화합물이 주로 사용 되고 있으며 오존과 전해수를 이용한 방법도 최근에 개발 되었다. 물리적 처리로는 초음파, 방사선조사, 콜드 플라즈 마 기술이 이용되고 있으며, 병용처리 방법으로는 자외선/ 염소 혼합물, 오존/유기산, 초음파/유기산 등이 연구되었다. 본 리뷰에서는 국내에서 소비되는 버섯의 종류와 그에 대한 미생물 오염도를 조사하고, 버섯에 오염된 미생물을 제 어할 수 있는 기술에 대하여 조사하여, 정리하였다.
To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80–85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5–10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1°C or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 μmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon– Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360–840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.
To increase antioxidant and antibacterial activities of seasoned soy sauce, five kinds of oriental medicinal plant(Scutellaria baicalensis (P1), Coptis japonica makino (P2), Citriunshius pericarpium (P3), Zizyphi spinosi semen (P4), Crataegus pinnatifida (P5)) and four kinds of medicinal mushrooms(Inonotus obliquus (M1), Hericium erinaceus (M2), Phellinus linteus (M3), Lentinula edodes (M4)) were added to seasoned soy sauce. Soluble solid content, pH, salinity, total polyphenol & flavonoid contents were determined. DPPH & ABTS radical scavenging activities, SOD-like activity, and antibacterial activity were analyzed. Experimental sauces showed decreased pH but significant increases of soluble solid content and salinity. Total polyphenol content was 12.76 μg GAE/g in the control. However, M1 and P1 sauce had significantly higher polyphenol contents at 352.14 and 528.25 μg GAE/g, respectively. Total flavonoids content also showed the same pattern. DPPH free radical scavenging activity was the lowest in the control at 15.75%. It was the highest at 81.80% in M1 and 68.88% in P1. ABTS free radical scavenging activity and SOD-like activity showed the same tendencies. They were higher in the experimental groups than in the control. As for the antibacterial activity analyzed by the paper-disc method, the activity increased the most in P1 and P2. In particular, P2 had the strongest antibacterial activity. Its activity against different microorganisms was in the order of Staphylococcus aureus > Bacillus cereus > Escherichia coli > Salmonella typhimurium. In conclusion, these new sauces show increased antioxidative and antioxidant activities. Therefore, they are expected to be used in various ways as a functional soy sauce.
The biological efficiencies of promising Pleurotus spp. were evaluated. Pleurotus ostreatus, Pleurotus tuberregium,and Pleurotus sajor-cajuwere investigated at temperatures of 22oC, 20oC, and 18oC to determine their ability to adapt to temperatures that are likely to be found in subtropical regions. The experiment was conducted using a substrate comprising Popular sawdust 60% + cotton seed 20% + beet pulp 20% under a relative humidity of 65%. The results indicated that there were significant differences in terms of biological efficiency between the species: P. tuber regium 128.84% at 22oC, P. ostreatus 108.41% at 22oC, and P. sajor-caju is 80% at 20oC. The common temperatures at which all species showed the highest biological efficiencies were 22oC and 20oC. Therefore, the production of the evaluated species was equal to or surpassed biological efficiencies reported in tropical environments, thereby demonstrating a potential opportunity to adapt to tropical environments without compromising quality standards.
Fungi that infect mushrooms and cause diseases are called mycoparasitic fungi. Understanding the diversity of mycoparasitic fungi in wild mushrooms is important for the mushroom industry, as they can parasitize cultivated mushrooms. However, few studies have been conducted on the diversity of mycoparasitic fungi in wild mushrooms in South Korea. Upon surveying mushroom flora, we found a mycoparasitic fungus and analyzed its strain using molecular phylogeny and morphological examination. The strain was identified as Sepedonium laevigatum, which is an unrecorded species in South Korea. In this study, we described the cultural and microscopic characteristics of this strain of fungus.