Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.
Herbal medicine has been the basis for medical treatments through much of human history, and such traditional medicine is still widely practiced today. Modern medicine makes use of many plant-derived compounds as the basis for pharmaceutical drugs. In traditionally, Achyranthes aspera, Safflower (Carthamus tinctorius) seed and Acanthopanax senticosus have been used for the treatment and prevention of bone-related diseases. In this study, we investigated the pharmacological effect of mixture of Achyranthes aspera, Safflower (Carthamus tinctorius) seed and Acanthopanax senticosus and the other herbs. Two types of enzymes were used to enhance the extraction components of amino acid, mineral content, free sugar, and flavor recovery in extracting natural herbal mixtures(NME). We evaluated regulation of osteogenic differentiation in human bone marrow mesenchymal stem cells using alkaline phosphatase staining, alizarin red S staining and RT-PCR. The CCK-8 assay indicated that NME had no cytotoxicity but increased cell survival. In addition, NME promoted the mineralization and expression of osteogenic differention marker genes in human bone marrow mesenchymal stem cells. Therefore, NME has an effect of promoting proliferation and osteogenic differentiation of human mesenchymal stem cell.
Osteoporosis is a metabolic bone disease that is characterized by low bone mass resulting from an increase in bone resorption relative to bone formation. The most current therapies for osteoporosis have focused on inhibiting bone resorption by osteoclasts. The purpose of this study is to develop new anabolic agents for treatment of osteoporosis that have fewer risks compared to conventional therapies. We searched the natural products that were derived from the traditional Asian medicines which have been used for treatment of bone related diseases. Icaritin is a flavonoid glycoside derived from the herb Epimedium which has beneficial effects on bone formation. To determine the effect of icaritin on bone formation, we examined the effect of icaritin on MC3T3-E1 cell proliferation and differentiation. For determining the effects of icaritin on proliferation, we performed the MTT assay using MC3T3-E1 cells. To evaluate whether icaritin could promote the osteogenic differentiation of MC3T3-E1 cells, alkaline phosphatase (ALP) activity and mRNA expressions of Runx2, osteocalcin (OCN), RANKL, and osteoprotegerin (OPG) were determined. Icaritin increased MC3T3-E1 cell proliferation. Icaritin increased the ALP activity of MC3T3-E1 cells on 72 hour culture in osteogenic media. mRNA expression of Runx2 was increased after 24 hour culture with icaritin. mRNA expression of osteocalcin was increased after 72 hour culture with icaritin. In addition, icaritin increased the mRNA expressions of OPG and RANKL. However, icaritin increased the mRNA expression of OPG much more than that of RANKL, and then, it increased the OPG/RANKL ratio. These results suggest that icaritin promotes osteogenic differentiation of osteoblasts and decreases osteoclast formation regulated by osteoblasts.
BMP-2 is a well-known TGF-beta related growth factor, having a significant role in bone and cartilage formation. It has been employed to promote bone formation in some clinical trials, and to differentiate mesenchymal stem cells into osteoblasts. However, it is difficult to obtain this protein in its soluble and active form. hBMP-2 is expressed as an inclusion body in the bacterial system. To continuously supply hBMP-2 for research, we optimized the refolding of recombinant hBMP-2 expressed in E. coli, and established an efficient method by using detergent and alkali. Using a heparin column, the recombinant hBMP-2 was purified with the correct refolding. Although combinatorial refolding remarkably enhanced the solubility of the inclusion body, a higher yield of active dimer form of hBMP-2 was obtained from one-step refolding with detergent. The refolded recombinant hBMP-2 induced alkaline phosphatase activity in mouse myoblasts, at ED50 of 300-480ng/ml. Furthermore, the expressions of osteogenic markers were upregulated in hPDLSCs and hDPSCs. Therefore, using the process described in this study, the refolded hBMP-2 might be cost-effectively useful for various differentiation experiments in a laboratory.
Fucoidan has been extensively studied as medicinal materials due to its biological activities including osteoblastic differentiation effect. However, osteoblastic effect by fucoidan is unknown in alveolar bone marrow derived mesenchymal stem cells (ABM-MSCs). The present study was undertaken to evaluate the effect of fucoidan on Osteoblastic differentiation in ABM-MSCs and explore its mechanism. Cell proliferation was analyzed by crystal violet staining. Osteoblast differentiation was determined by alkaline phosphatase activity, calcium accumulation assay and gene expression of osteoblast markers. We found that fucoidan induced cell proliferation of ABM-MSCs. Furthermore, fucoidan increased the ALP activity, calcium accumulation, and osteoblast specific genes such as Runx2, type I collagen alpha 1. Moreover, fucoidan induces the expression of asporin and bone morphogenic protein (BMP)-2 and asporin. Based on these results, these finding indicate that fucoidan induces osteoblast differentiation in ABM-MSCs and partially enhanced the mRNA expression of BMP-2 and asporin.
Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation–mimicking agent cobalt chloride (CoCl2) on the osteogenic differentiation of human mesenchy-mal stem cells (hMSCs) and elucidate the underlying mole-cular mechanisms. Study design. The dose and exposure periods for CoCl2 in hMSCs were optimized by cell viability assays. After confirmation of CoCl2-induced HIF-1α and vas-cular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with CoCl2 on hMSC osteogenic differentiation were evaluated by RT- PCR analysis of osteogenic gene expression, an alkaline phos-phatase (ALP) activity assay and by alizarin red S staining. Results. Variable CoCl2 dosages (up to 500 µM) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After CoCl2 treatment of hMSCs at 100 µM for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocal-cin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP acti-vity was increased in these treated cells in which an accele-rated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation poten-tial of hMSCs could be preserved and even enhanced by CoCl2 treatment.
Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and β-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.
The purpose of this study was to examine the effects of vi tamin D3 and 1'etinoic acid(RA) on the human mesenchymal stem ce!ls(MSC) g1'owth and osteogenic differentiations. Cell proliferation, mineralization, cell cycle, expression of cell cycle regu l atOJγ proteins and markers fo1' osteogenic differenatiaiton were determined by MTI assay, mineralization assay, flow cytomet1'Y‘ and Western blot analysis, respectively. Cell viability was dec1'ease by each vitamin D3 and RA added to MSC. it was more decrease by vitamin D3 and RA. Mineralized nodule formation revealed similar expression pattern with positive cont rol group at vitamin D3 and RA mixed add to MSC. At vitamin D3 and RA mixed add to MSC after 7 days of incubation was increase G1 s tage. after 21 days of incubation was inhibit cell cycle prog1'ess by inc1'ease of sub-G1 Treatment vitamin D3 to MSC inhibits p53 and p21, but inc1'ease pRb. RA inhibit p53, but increase p21 and pRb, vitamin D3 plus RA group was same as added RA group. so two vitamin was effect to inhibited cell growth each different mechanism. Expression of BMP-2 protein was prominent in osteogonic supplement treated g1'oup of MSC at 2 weeks cultivation days, but vi tamin D3 treatment decreased BMP-2 expression rather than in (+) control group. BSP protein was notably increased in the OS compa red to positive controls at 2 weeks cultivation, but similar to that of vitamin D3 group t1'eatment group and was least expressed in plus RA mixed group, at 3 weeks, BSP expression was similar to 1'esult of 2 weeks Collectively, these results shows that vitamin D3 and RA have diffe1'ential effects on the MSCs g1'owth and differ entia tion 211
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a naturally occuring polyphenol compound which present in the skin of grapes and red wine has been considered to posses chemopreventive and antioxidant properties. However, little is known about the cellular actions by which resveratrol mediates its therapeutic effects. In this study, the effect of resveratrol on cell proliferation and induction of apoptosis in human osteogenic sarcoma (HOS) cells was investigated. IC50 value was determined to be approximately 60μg/mℓ. Chromosomal DNA framgmentation analysis showed the appearance degraded DNA in time-and dose-dependent manner upon treatment of resveratrol. In order to observe the molecular mechanism involved in resveratrol-induced apoptosis, Western blot analysis was performed. We observed the decrease in the level of procaspase-3, the zymogen form of active caspase-3 in resveratrol-treated cells. This result implies that caspase-3 is activated upon treatment of resveratrol. The activation of caspase-3 was confirmed by the cleavage of poly(ADP-ribose) polymerase. Taken together, our data demonstrate that resveratrol has anti-proliferative effect on HOS cells and induced apoptosis through activation of caspase-3 and PARP cleavage.