This study investigated the process of reclaiming Mo from calcined waste hydrotreating (CWHT) catalysts using tributyl phosphate (TBP) as an extractant with electron-withdrawing properties. Using inductively coupled plasma (ICP) technology, the optimal operating conditions for Mo recovery were determined based on the metal ion content in different processes. Considering the pH impact on metal species in solution, an acid leaching solution with 6 M sulfuric acid was employed. After 3 h of reaction, 94 wt% of the Mo was transferred from the WHT catalyst to the acid leaching solution. Adjusting the filtrate to a pH of 1.5 allowed the TBP to selectively extract over 98.8 wt% of Mo from the aqueous filter solution into the organic phase. MC-Cabe-Thiele theory predicts that a three-stage countercurrent extraction can reduce Mo to less than 0.2 wt%. Stripping moved approximately 98 wt% of the Mo from the organic to the inorganic phases. The recovered colorless organic tributyl phosphate can be used in the recycled extraction process.
We prepared porous poly(ε-caprolactone)/poly(lactic-co-glycolic acid) (PCL/PLGA) 3D scaffolds with surfaces that were modified through the co-precipitation of calcium phosphate (CAP) with binary drug components, including risedronate (RSD) and hyaluronic acid (HyA). The 3D porous biodegradable PCL/PLGA scaffolds were fabricated by sintering microspheres prepared with a 30/70 PCL/PLGA blend. The co-precipitation of the CAP coating with binary drug components significantly enhanced the proliferation and differentiation of rat mesenchymal stem cells (rMSCs) on the scaffolds. Although the presence of both HyA and RSD positively improved proliferation and differentiation, HyA and RSD were more effective on osteoblastic proliferation and differentiation, respectively. These results strongly demonstrate that the drug effects on osteoblastic responses were closely interconnected. The two drugs affect rMSCs behavior in a concentration-dependent manner, requiring a balance between proliferation and differentiation for optimal bone regeneration. We expect this surface modification technique could potentially be utilized for the fabrication of functionalized biodegradable scaffolds and delivery of drug mixtures.
In this paper, the commercial anion exchange resin (IRA900) was used to investigate the adsorption properties, comparing the anion selectivity of phosphate and sulfate in water. The phosphate removal efficiency was 29.6% less than sulfate in single condition, and significantly decreased from 44.8% to 3.47 in mixed conditions while sulfate removal efficiency remained unchanged, confirming a higher selectivity for sulfate over phosphate. In the pH effect, phosphate removal efficiency increased with increase of pH due to the increased HPO4 2- species. The total removal efficiency of phosphate and sulfate was obtained approximately 62% in mixed condition, regardless of solution pH, indicating that the total anion exchange capacity was not influenced in the pH. The values of qmL and bL derived from Langmuir isotherm equation were 11.5 and 8.10 times higher for sulfate than for phosphate in mixed conditions. In single condition, sulfate and phosphate reached to equilibrium at 6 and 3 h, respectively. In mixed condition, phosphate was desorbed by the sulfate after 1h and the time to equilibrium for sulfate was retarded to 6h. Furthermore, when comparing the separation factor (αP/S), increasing the initial concentration led to higher selectivity of phosphate.
In this study, ferric phosphate precursors were prepared by controlling precipitation time, and the resulting LiFe PO4 active materials were thoroughly investigated. Microscale LiFePO4 cathode materials, designed for high energy density at the cell level, were successfully synthesized through a 10 h co-precipitation. As the reaction time increased, smaller primary particles were aggregated more tightly, and the secondary particles exhibited a more spherical shape. Meanwhile, ammonia did not work effectively as a complexing agent. The carbon coated LiFePO4 (LiFePO4/C) synthesized from the 10 h ferric phosphate precursor exhibited larger primary and secondary particle sizes, a lower specific surface area, and higher crystallinity due to the sintering of the primary particles. Enhanced battery performance was achieved with the LiFePO4/C that was synthesized from the precursor with the smaller size, which exhibited the discharge capacity of 132.25 mAh ‧ g-1 at 0.1 C, 70 % capacity retention at 5 C compared with 0.1 C, and 99.9 % capacity retention after the 50th cycle. The better battery performance is attributed to the lower charge transfer resistance and higher ionic conductivity, resulting from smaller primary particle sizes and a shorter Li+ diffusion path.
Building step-scheme (S-scheme) heterojunctions has recently emerged as a highly effective approach for developing superior photocatalysts for water purification. Herein, a C3N5/ Ag3PO4 (CA) S-scheme heterojunction was prepared by in situ growth of Ag3PO4 nanoparticles on 2D C3N5 nanosheets. Notably, under visible-light irridiation, CA exhibited significantly higher activity in the photodegradation of LEVO, which is about 28.38, 2.41, and 2.14 times higher than the rates for C3N5, Ag3PO4, and the mixture, respectively. Based on the radical scavenging experiments, the mechanism for enhanced photocatalytic performance has been analyzed, is attributed to improved interfacial charge separation, the elevated redox potential of photon-generated electrons and holes, and the increased generation of active species resulting from the S-scheme transfer of photoinduced carriers. Additionally, CA demonstrates greater stability than either C3N5 or Ag3PO4 alone in the photo-oxidation of LEVO and the photodegradation of RhB. In essence, this study not only deepens our comprehension of the photocatalytic mechanism of CA, but also pioneers a novel concept for the development of highly effective and stable S-type heterojunction photocatalysts.
The separation of zirconium and hafnium using tributyl phosphate (TBP)-Dodecane extractants in nitric acid medium was performed. Zirconium oxychloride, used as extraction feed, was obtained from the synthesis of Kalimantan zircon sand concentrate smelted using NaOH. The extraction process was carried out by dissolving chloride-based metals in nitric acid media in the presence of sodium nitrate using TBP-Dodecane as an extractant. Some of the extraction parameters carried out in this study include variations in organic phase and aqueous phase (O/A), variations in contact time, and variations in nitric acid concentration. Extraction was carried out using a mechanical shaker according to the parameter conditions. X-ray fluorescence (XRF) was used for elemental (Zr and Hf) composition analysis of the aqueous solution. The results showed that zirconium was separated from hafnium at optimum conditions with an organic/aqueous ratio of 1:5, contact time of 75 min, and an HNO3 concentration of 7 M. The resulting separation factor of zirconium and hafnium using TBP-Dodecane was 14.4887.
In response to the growing demand for high-performance lithium-ion batteries, this study investigates the crucial role of different carbon sources in enhancing the electrochemical performance of lithium iron phosphate ( LiFePO4) cathode materials. Lithium iron phosphate ( LiFePO4) suffers from drawbacks, such as low electronic conductivity and low lithium-ion diffusion coefficient, which hinder its industrial development. Carbon is a common surface coating material for LiFePO4, and the source, coating method, coating amount, and incorporation method of carbon have a significant impact on the performance of LiFePO4 materials. In this work, iron phosphate was used as the iron and phosphorus source, and lithium carbonate was used as the lithium source. Glucose, phenolic resin, ascorbic acid, and starch were employed as carbon sources. Ethanol was utilized as a dispersing agent, and ball milling was employed to obtain the LiFePO4 precursor. Carbon-coated LiFePO4 cathode materials were synthesized using the carbothermal reduction method, and the effects of different carbon sources on the structure and electrochemical performance of LiFePO4 materials were systematically investigated. The results showed that, compared to other carbon sources, LiFePO4 prepared with glucose as the carbon source not only had a higher discharge specific capacity but also better rate cycle performance. Within a voltage range of 2.5–4.2 V, the initial discharge specific capacities at 0.1, 0.5, and 1 C rates were 154.6, 145.6, and 137.6 mAh/g, respectively. After 20 cycles at a 1 C rate, the capacity retention rate was 98.7%, demonstrating excellent electrochemical performance.
The binary oxide adsorbent using Fe and Mn (Fe-Mn) has been prepared by precipitation method to enhance the removal of phosphate. Different amounts of chitosan, a natural organic polymer, were used during preparation of Fe-Mn as a stabilizer to protect an aggregation of Fe-Mn particles. The optimal amount of chitosan has been determined considering the separation of the Fe-Mn particles by gravity from solution and highest removal efficiency of phosphate (Fe-Mn10). The application of Fe-Mn10 increased removal efficiency at least 15% compared to bare Fe-Mn. According to the Langmuir isotherm model, the maximum uptake (qm) and affinity coefficient (b) were calculated to be 184 and 240 mg/g, and 4.28 and 7.30 L/mg for Fe-Mn and Fe-Mn10, respectively, indicating 30% and 70% increase. The effect of pH showed that the removal efficiency of phosphate was decrease with increase of pH regardless of type of adsorbent. The enhanced removal efficiency for Fe-Mn10 was maintained in entire range of pH. In the kinetics, both adsorbents obtained 70% removal efficiency within 5 min and 90% removal efficiency was achieved at 1 h. Pseudo second order (PSO) kinetic model showed higher correlation of determination (R2), suggesting chemisorption was the primary phosphate adsorption for both Fe-Mn and Fe-Mn10.
PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed.
METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined.
RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process.
CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
The oxygen evolution reaction (OER) is very sluggish compared to the hydrogen evolution reaction (HER). Considering this difference is essential when designing and developing a cost-effective and facile synthesis method for a catalyst that can effectively perform OER activity. The material should possess a high surface area and more active sites. Considering these points, in this work we successfully synthesized sheets of cobalt phosphate hydrate (CP) and sulphurated cobalt phosphate hydrate (CPS) material, using simple successive ionic layered adsorption and reaction (SILAR) methods followed by sulfurization. The CP and CPS electrodes exhibited overpotentials of 279 mV with a Tafel slope of 212 mV dec1 and 381 mV with a Tafel slope of 212 mV dec1, respectively. The superior performance after sulfurization is attributed to the intrinsic activity of the deposited well-aligned nanosheet structures, which provided a substantial number of electrochemically active surface sites, speeded electron transfer, and at the same time improved the diffusion of the electrolyte.
High-temperature friction performances of graphite blocks (GBs) and zinc phosphate impregnated graphite blocks (IGBs) were evaluated under various friction temperatures. The surface of IGB exhibited extremely lower average friction coefficient values, that was 0.007 at 400 °C and 0.008 at 450 °C, in comparison to that of GB (0.13 at 400 °C and 0.16 at 450 °C, respectively). The worn surface of IGB in the high-temperature friction test was smoother and more complete than that of GB. The wear under high temperature and load caused the transformation of zinc pyrophosphate to zinc metaphosphate and the formation of a continuous large-area boundary lubrication layer combined with graphite and metallic element on the wear surface. The superior tribology property of IGB could be attributed to the digestion of iron oxides by tribo-chemical reactions and passivation of the exposed dangling covalent bonds. Specifically, the layered structure generated on the IGB wear interface effectively decreased the adhesive forces and prevented the surface from serious damage.
Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.
A wire rod, a material for multistage cold forging, is subjected to spheroidization and low annealing heat treatment to secure formability, and a phosphate coating treatment on the material surface to secure lubricity. The film layer produced by the phosphate treatment process is involved in adhesion to the material surface, adhesion to the forging die surface, and lubricity. This results in the increase or decrease of the forming load and the increase or decrease of the die life in the cold forging process. In particular, as the cold forging process progresses, the phosphate film is damaged and the original performance is deteriorated, so there is a high possibility of process defects. In case of excessive damage, the film is completely lost and die soldering occurs. Therefore, in this study, quantitative criteria for phosphate film damage are presented and the effect on the cold forging process is analyzed based on this to improve process analysis prediction accuracy. Therefore, in this study, quantitative criteria for phosphate film damage are presented, and based on this, the friction coefficient in the multi-stage cold forging process is to be derived.
The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1 h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.
Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.
This study investigated the substitution effect of phosphate and isolated soybean powder (ISP) by Allomyrina dichotoma larvae powder (AP) in emulsion sausage. The sausages were prepared for five treatments: 1) positive control (PC): sausages manufactured with sodium pyrophosphate (0.3%) and ISP (1%); 2) negative control (NC): sausages manufactured without sodium pyrophosphate, and ISP; 3) phosphate replacement (PR): sausages manufactured with ISP and AP (1%); 4) ISP replacement (IR): sausages manufactured with sodium pyrophosphate and AP; 5) phosphate and ISP replacement (PIR): sausages manufactured with AP. The 1% AP extract showed DPPH radical scavenging (45.65±2.468%) and metal chelating (22.46±3.559%) activity. The high pH value of AP (8.03) increased the pH of the meat batter of PR, IR, and PIR (p<0.05), but there was no inhibitory effect on cooking loss. Cooking loss of IR was not significantly different with PC due to phosphate. The addition of AP decreased the L* and a* values and increased the b* values, and decreased hardness, chewiness, and springiness of PR, IR, and PIR (p<0.05). AP did not inhibit lipid oxidation in sausages, in contrast to phosphate. In sensory evaluation, the addition of AP resulted in low scores for all sensory parameters of the sausages, although most panels had normal or positive awareness (p<0.05). Aroma was more influential on samples than color. Overall, AP did not replace phosphate and ISP in the sausages. Therefore, processes such as eliminating unique aroma and color and increasing solubility through particle size control are necessary to use AP as a protein source.