검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        2.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are 34.3 μm and 3.2 μm, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.
        4,000원
        3.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, a rapid increase in demands for the soft magnetic composite parts has been created and it has been tried to improve their properties by various processing methods, alloying elements and compaction parameters. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effects of warm compaction and polymer binder on magnetic properties of Fe powder core were investigated. The sintering powder, Fe oxide, was ball-milled for 30n hours. And then ball-milled Fe oxide powder was reduced through hydrogen reduction process. The hydrogen reduced Fe powder and polymer binder were mixed by 3-D turbular mixer. And then the mixed powder was warm-compacted. The magnetic properties such as core loss and permeability were measured by B-H curve analyzer.
        4,000원
        4.
        2006.09 구독 인증기관·개인회원 무료
        Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of at 0.1 T and 50 kHz through proper processes and a permeability of 68 at low frequency.
        5.
        2006.09 구독 인증기관·개인회원 무료
        Magnetic powder core is considered to be one of the essential parts in modern electronic devices such as power supplies, digital telecommunication equipments and automotive electronics. To satisfy the recent requirement for the miniaturization of micro-systems and portable devices, the inductors or magnetic powder cores should have reduced compact volume and high universality both in magnetic and geometric aspects. In contrast, in some application areas such as power converters, the price is also one of the important aspects to be considered. To comply with such stringent technical requirements in modern electronic industry, it is highly required to develop magnetic materials with increased frequency stability, higher saturation magnetic flux density, higher permeability and higher quality factor (Q). The magnetic alloy powders which are currently being used in PM industry are permalloy (Ni-Fe), sendust (Fe-Si-Al), iron (Fe), silicon steel (Fe-Si) and ferrous amorphous alloy powders. Recent research trends for the industrial application of soft magnetic material and magnetic powder core will be introduced in the present paper. Emphasis will be placed on the newly required properties and corresponding new PM technologies for newly emerging application fields such as hybrid electric vehicle, alternative and renewable energy systems for next generation.
        6.
        2006.09 구독 인증기관·개인회원 무료
        Core loss of soft magnetic powder cores have been focused on to achieve high efficiency of power supplies. In this study the effects of crystal grain size on core loss were investigated by changing heat treatment conditions. It was found that core loss is influenced by crystal grain size because eddy current loss decreased and hysteresis loss increased by making crystal grain size smaller, and it is also influenced by particle size.
        7.
        2006.04 구독 인증기관·개인회원 무료
        Seasonal changes have been recognized in particle characteristics and forming characteristics of iron powder with insulated coating for a compacted magnetic core because of its high hygroscopicity, due to its phosphate coating and resin binder additives. For this reason, particle characteristics and molding characteristics of the powder with diverse water absorbtivity have been studied. The result shows that the higher the volume of absorbed water, the worse the fluidity becomes, resulting in the reduction in both springback during the molding process and expansion reduction after the heat treatment. The requirement on dimension accuracy for the finished product can be satisfied with an additional drying process on the material powder, which contributes to maintain its water volume constant.
        10.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This paper was evaluated manufacturing properties for core material of self-healing capsules using cement powder, it was found that coagulants for coagulation of core materials were important factors in manufacturing core materials.