It is well known that invertebrates do not have adaptive immunity because of their short life cycle. Especially, insects have a strong innate immune system, including antimicrobial peptides (AMPs) production, to protect themselves from a wide range of pathogens. Previously, we identified over 60 genes related to AMP production, including Toll and Imd pathways, and characterized their immunological role in response to pathogenic infection through target gene-specific RNAi. This resulted in decreased expression levels of most AMPs in the larvae which were injected with target gene-specific dsRNA and microbes. Currently, we are focusing on studying the regulation of AMP production through epigenesis. It may help us understand how to regulate the innate immune system induced by pathogenic infection.
Oral bacterial infections substantially affect the development of various periodontal diseases and oral cancers. However, the molecular mechanisms underlying the association between Fusobacterium nucleatum (F. nucleatum ), a major periodontitis (PT)-associated pathogen, and these diseases require extensive research. Previously, our RNAsequencing analysis identified a few hundred differentially expressed genes in patients with PT and peri-implantitis (PI) than in healthy controls. Thus, in the present study using oral squamous cell carcinoma (OSCC) cells, we aimed to evaluate the effect of F. nucleatum infection on genes that are differentially regulated in patients with PT and PI. Human oral squamous cell carcinoma cell lines OSC-2O, HSC-4, and HN22 were used. These cells were infected with F. nucleatum at a multiplicity of infection of 100 for 3 hours at 37℃ in 5% CO2. Gene expression was then measured using reverse-transcription polymerase chain reaction. Among 18 genes tested, the expression of CSF3, an inflammation-related cytokine, was increased by F. nucleatum infection. Additionally, F. nucleatum infection increased the phosphorylation of AKT, p38 MAPK, and JNK in OSC-20 cells. Treatment with p38 MAPK (SB202190) and JNK (SP600125) inhibitors reduced the enhanced CSF3 expression induced by F. nucleatum infection. Overall, this study demonstrated that F. nucleatum promotes CSF3 expression in OSCC cells through p38 MAPK and JNK signaling pathways, suggesting that p38 MAPK and JNK inhibitors may help treat F. nucleatum-related periodontal diseases by suppressing CSF3 expression.
본 연구는 기업의 국제화 수준이 기업 간 제휴 파트너로서의 매력도를 증가시키는지 검증해 보고자 하였다. 이 와 더불어 기술적 역량과 기업집단 소속여부가 국제화 수준과 기업 간 제휴형성 사이의 관계를 강화시키는지도 함께 검증하였다. 가설의 검증을 위해 1997년 기준 코스닥 등록기업 리스트를 토대로 1997년부터 2014년까지 국내 242개 제조업체에서 수집한 3,546개의 쌍체 표본 자료(dyadic data)를 구성하였다. 음이항 회귀분석 (negative binominal regression)을 사용한 실증분석 결과, 국제화 수준이 기업간 제휴형성에 긍정적인 영향을 미칠 것이라는 본 논문의 가설이 지지된다는 것을 확인할 수 있었다. 한편, 기술적 역량과 기업집단 소속여부는 기업 간의 제휴형성에 긍정적인 영향을 미치는 것이 확인되었으나 국제화 수준과 기업 간 제휴형성 사이에서의 조절효과는 나타나지 않았다. 본 논문의 결과에 따르면, 제휴 파트너 선택 과정에서 국제화 수준이라는 지표는 제휴 파트너 기업의 내부 역량에 대한 긍정적인 신호로 작용하여 조직 장(organizational field) 내에서의 잠재 적 제휴 파트너로서의 정당성을 획득하는 수단이 될 수도 있음을 시사한다. 본 논문은 국제화 수준이라는 지표가 오디언스(audience)로 하여금 해당 조직의 내부역량에 대한 긍정적 기대효과를 유발할 수도 있음을, 실제 기업 간의 전략적 제휴라는 상황적 맥락을 바탕으로 이론화하고 이를 실증분석 하였다는데 의의가 있다.
This research investigated the immunoenhancing effect through the intracellular MAPKs and NF-B signaling pathways in macrophages activated by crude polysaccharides (YBP) of barley sprouts. YBP extracted from barley sprouts is composed of xylose (25.8%), arabinose (24.1%), galactose (23.4%), and galacturonic acid (11.7%). YBP did not affect the cytotoxicity and showed superior secretion of nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)- by RAW264.7 cells. Also, YBP dose dependently increased IL-6, TNF-, and inducible nitric oxide synthase (iNOS) mRNA gene expression. In the western blot, YBP strongly induced the phosphorylation of the p38, JNK, ERK, and IB pathways in RAW 264.7 cells. In the anti-pattern recognition receptor (anti-PRRs) assay, the effect of YBP on NO secretion strongly decreased toll-like receptor (TLR) 4 and Dectin1 antibodies, whereas IL-6 and TNF- secretion by YBP mainly decreased SR and CD14. Therefore, we concluded that YBPinduced NO, IL-6, and TNF- were secreted via the MAPKs, while NF-B pathways through TLR4, Dectin1, SR, and CD14 receptors existed in a macrophage surface and were involved in the immunoenhancing effect.
Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-, and interleukin-1 (IL-1)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-B, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.
In crustaceans, molting is regulated by interactions between ecdysteroid and juvenile hormone (JH) signaling pathway-related genes. Unlike the ecdysteroid signaling pathway, little information on the role of JH signaling pathway-related genes in molting is available in zooplanktonic crustaceans. In this study, three genes (juvenile hormone acid O-methyltransferase (JHAMT ), methoprene-tolerant (Met ), and juvenile hormone epoxide hydrolase (JHEH )) which are involved in the synthesis, receptor-binding, and degradation of JH were identified using sequence and phylogenetic analysis in the brackish water flea, Diaphanosoma celebensis. Transcriptional changes in these genes during the molting cycle in D. celebensis were analyzed. Sequence and phylogenetic analysis revealed that these putative proteins may be functionally conserved along with those of insects and other crustaceans. In addition, the expression of the three genes was correlated with the molting cycle of D. celebensis, indicating that these genes may be involved in the synthesis and degradation of JH, resulting in normal molting. This study will provide information for a better understanding of the role of JH signaling pathwayrelated genes during the molting process in Cladocera.
Recent progress has been made to establish intestinal organoids for an in vitro model as a potential alternative to an in vivo system in animals. We previously reported a reliable method for the isolation of intestinal crypts from the small intestine and robust three-dimensional (3D) expansion of intestinal organoids (basal-out) in adult bovines. The present study aimed to establish next-generation intestinal organoids for practical applications in disease modeling-based host-pathogen interactions and feed efficiency measurements. In this study, we developed a rapid and convenient method for the efficient generation of intestinal organoids through the modulation of the Wnt signaling pathway and continuous apical-out intestinal organoids. Remarkably, the intestinal epithelium only takes 3-4 days to undergo CHIR (1 µM) treatment as a Wnt activator, which is much shorter than that required for spontaneous differentiation (7 days). Subsequently, we successfully established an apical-out bovine intestinal organoid culture system through suspension culture without Matrigel matrix, indicating an apical-out membrane on the surface. Collectively, these results demonstrate the efficient generation and next-generation of bovine intestinal organoids and will facilitate their potential use for various purposes, such as disease modeling, in the field of animal biotechnology.
Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.
Diabetic mellitus (DM) is a carbohydrate metabolic disorder that involves high blood sugar because insulin works abnormally. Type 2 diabetes accounts for most of them. However, diabetes treatments such as GLP-1 and DPP-4 inhibitors commonly caused side effects including gastrointestinal disorders. Grifola frondosa (G. frondosa) revealed various pharmacological effects in recent studies. It has a variety of anti-cancer polysaccharides through host-mediated mechanisms. D-fraction in G. frondosa has apoptotic effects, promoting myeloid cell proliferation and differentiation into granulocytes-macrophages. It has also been shown to reduce the survival rate of breast cancer cells. Though, no further study has been conducted on the specific effects of G. frondosa in the db/db mouse. Therefore, we would like to research the blood glucose improving effect of G. frondosa, a natural material, in type 2 diabetes model mouse, in this study. G. frondosa was administered to the disease model mouse (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) for 8 weeks to monitor weight and blood glucose changes every week. And we evaluated anti-diabetes effects by checking biomarker changes shown through blood. Experiment did not show statistically significant weight differences, but control groups showed significantly higher weight gain than G. frondosa administered groups. We collected blood from the tail veins of the db/db mouse each week. As a result, the lowest blood sugar level was shown in the 500 mg/ kg group of G. frondosa. Glucose in the blood was examined with HBA1c, and 7.8% was shown in the 500 mg/kg administration group, lower than in other groups. These results suggest the potential improvements of diabetes in G. frondosa.
In vitro maturation (IVM) of oocytes is the procedure where the immature oocytes are cultivated in a laboratory until they are mature. Since IVM oocytes generally have low developmental competence as compared to those matured in vivo, development of an optimal IVM culture system by fine-tuning culture conditions is crucial to maintain high quality. In-depth knowledge and a deep understanding of the in vivo physiology of oocyte maturation are pre-requisites to accomplish this. Within ovarian follicles, various signaling pathways that drive oocyte development and maturation regulate interaction between oocytes and surrounding somatic cells. This review discusses the sonic hedgehog (SHH) signaling pathway, which has been demonstrated to be intimately involved in folliculogenesis and oocyte maturation. Advances in elucidating the role of the SHH signaling pathway in oocyte maturation will aid attempts to improve the current inferior in vitro oocyte maturation system.
Agarum clathratum (A. clathratum) is a marine brown algal species that belongs to the Costariaceae family and has antioxidant and anti-microbial properties. However, the anti-inflammatory effects of A. clathratum and the molecular mechanisms involved have not been determined so far. This study aimed to investigate the anti-inflammatory effects of A. clathratum extracts in THP-1 macrophages stimulated by lipopolysaccharide (LPS) derived from Porphyromonas gingivalis. The THP-1 cells were differentiated with 12-O-tetradecanoylphorbol-13-acetate and treated with A. clathratum before LPS stimulation. Cell viability was assessed using the trypan blue exclusion assay. The expression of pro-inflammatory response-associated molecules was evaluated by quantitative real-time polymerase chain reaction and Western blot analysis. A. clathratum treatment inhibited the expression of interleukin-1β in LPS-stimulated THP-1 macrophages without causing any cytotoxicity. The anti-inflammatory effect of A. clathratum resulted in a significant repression of the JNK/c-Jun signaling axis, a key regulator in inflammation responses. This study highlights the possible role of A. clathratum in the inhibition of pro-inflammatory cytokines via suppression of the JNK/c-Jun signaling axis and suggests that A. clathratum could serve as a marine-derived anti-inflammatory agent in periodontitis.
Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.
This study summarizes the recent cutting-edge approaches for dentin regeneration that still do not offer adequate solutions. Tertiary dentin is formed when odontoblasts are directly affected by various stimuli. Recent preclinical studies have reported that stimulation of the Wnt/β-catenin signaling pathway could facilitate the formation of reparative dentin and thereby aid in the structural and functional development of the tertiary dentin. A range of signaling pathways, including the Wnt/β-catenin pathway, is activated when dental tissues are damaged and the pulp is exposed. The application of small molecules for dentin regeneration has been suggested as a drug repositioning approach. This study reviews the role of Wnt signaling in tooth formation, particularly dentin formation and dentin regeneration. In addition, the application of the drug repositioning strategy to facilitate the development of new drugs for dentin regeneration has been discussed in this study.