검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 254

        62.
        2018.04 구독 인증기관·개인회원 무료
        Amylose is carbohydrate polymer defined as a linear natural polysaccharide composed of α(1→4) bound glucose units. Due to its abundance, renewable nature, low cost, and biodegradability, this polymer is regarded as a promising green material for producing crystals and particles of different sizes ranging from the nanometer scale to the micrometer scale. Herein, short amylose chains and dextran-coated iron oxide magnetic nanoparticles (Dex@IONPs) were introduced to fabricate well-dispersed starch magnetic microbeads (SMMBs), which have a well-defined spherical shape and a uniform size of about 1 μm. We found that the aggregation of SMMBs can be mediated by the introduced Dex@IONPs in a concentration-dependent manner, indicating that Dex@MNPs, as the seed crystals, play an important role in self-assembly of SMMBSs. By using streptococcal protein G tagged with maltose binding protein (MBP-SPG), specific antibody against Escherichia coli O157:H7 was successfully immobilized on the surface of SMMBs. The Ab-functionalized SMMBs showed a high capture efficiency (>90%) comparable to the commercial immunomagnetic microparticles regardless of suspending agents (1X PBS and milk). Moreover, SMMBs exhibited excellent recyclability, in which the Ab immobilized on the surface of SMMBs can be refreshed by using the maltose elution buffer along with the unchanged capture efficiency. In addition, SMMBSs were assembled into the linear rod-shape microstructure by the introduced magnetic field during the amylose-mediated precipitation process. The convenient self-assembly of SMMBs with the well-defined size and shape, biocompatibility, tolerance to environmental variances, high magnetic response behavior, and excellent recyclability in the functionalization make these magnetic microparticles promising for many potential applications such as bio-sensing, labeling, and smart delivery of active compounds.
        63.
        2018.04 구독 인증기관·개인회원 무료
        Rice starch is a natural source of polysaccharides that can be used as a stabilizer, thickener, binder and fat mimetic in various foods. However, untreated starch possesses limited functionality due to its poor water solubility with a densely packed granular structure of amylopectin and amylose chains. Also, it shows weak complexing ability as the only amylose participates in complex formation with a chemical compound. The objective of this study is to improve complexation ability and water solubility of rice starch by 4-α-glucanotransferase (4αGTase) treatment. Complex forming capacity was examined by fully dissolving the 4αGTase-treated rice starch in 90% DMSO by mechanical stirring and mixing with iodine solution with following UV/Vis spectrophotometer measurements. Water solubility of the starch was measured by dissolving in distilled water (5% w/v) with mechanical stirring at 25 °C and 60 °C, and drying the supernatant after centrifugation. The complexing ability of starch was enhanced after the 4αGTase treatment. The absorbance at a peak wavelength increased, as well as the peak wavelength was shifted leftward, indicating that the type of molecules got involved in the complexation was changed. Alteration in the molecule composition and starch composition during the enzyme treatment may be due to disproportionation and cyclization by the 4αGTase. The water solubility (%) of the starch at 25 °C and 60 °C increased by 28-fold with the 4αGTase treatment regardless of the treatment time. The untreated starch showed solubility of 0.15 %, while the solubility of the 4αGTase-treated starch was about 4 - 4.5 % (w/v). It may be due to heat treatment and recrystallization which melted a granular structure and made it easier to be solubilized in water. Moreover, the increased solubility might be attributed to increase in the number of short branched chains and decrease in molecular weight.
        64.
        2018.04 구독 인증기관·개인회원 무료
        Carnosic acid from rosemary extract is one of the natural phenolic compounds which show the antioxidant and antimicrobial activities. Nevertheless, the use of rosemary extracts in food matrix is highly limited due to the low water solubility and poor chemical stability of active constituents of extract. Therefore, the aim of this study is to investigate the functionality and effect of starch based polymers on rosemary extract in aqueous solution for improving their efficiency of food application. To manufacture the rosemary-starch polymer complex, starch based polymers (cycloamylose; CA, cyclodextrin; CD, hydroxypropyl-beta-cyclodextrin; HP-b-CD, maltodextrin; MD, clustered dextrin; ClusD) were firstly dispersed in 5mM phosphate buffer (pH7) according to each concentrations. Rosemary extract was then dissolved in solution to react with the polymers. Enhanced water solubility of rosemary extract was measured using a spectrophotometer. Antioxidant (ABTS assay) & antimicrobial activity (MIC test) were also tested. In aqueous solution containing CD and HP-b-CD, the solubility of rosemary extract increased almost twice or more (189% and 248% respectively). CA, MD, and ClusD solutions also showed the results of increasing the solubility about 126%~129%. As rosemary extract dissolved better, it was also found to have increased antioxidant and antibacterial activity of rosemary-starch polymer complex. Especially, the degree of antioxidant activity has been increased much larger than the increased solubility level. Consequently, more studies are needed to determine why these results are produced. If further studies and experiments are conducted on this, it could be beneficial for food industry interested in utilizing rosemary extract.
        65.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The relationship of in vitro starch digestibility and gel strength was investigated at various concentrations (10-30%) of rice cultivars with different amylose contents (27.9, 17.9, and 5.2%). As the rice flour concentration increased, predicted glycemic index decreased, but gel strength increased regardless of amylose contents. Gel strength correlated strongly with amylose content, whereas in vitro starch digestibility was more highly affected by rice flour concentration than by amylose contents. Moreover, the impact of degree of gelatinization on in vitro starch digestibility of high amylose rice was also examined in terms of structural features and rheological properties. The digestion rate of fully gelatinized flour was 1.7 times higher than that of native flour, while the disrupted structure with a different gelatinization degree during starch digestion was visually demonstrated through the X-ray diffraction and molecular distribution analysis. The rice flour changed from an A-type to a V-type pattern and showed difference in crystalline melting. The low molecular weight distribution increased with increasing degree of gelatinization during starch digestion. The apparent viscosity also increased with degree of gelatinization. These results demonstrated that the starch digestibility of rice was more affected by concentration than by amylose content, as well as by the degree of gelatinization due to structural difference.
        4,000원
        66.
        2017.11 구독 인증기관·개인회원 무료
        Starch is an abundant, renewable, and low cost material that has been extensively studied for its role in crystallization. Herein, we developed a facile and green approach to produce the starch-based microparticles (SMPs) that could encapsulate curcumin during the self-association of short glucan chain obtained from waxy maize starch. Scanning electron microscopy (SEM) analysis indicated that the diameters of curcumin-loaded SMPs were ranged from 1.5 μm to 3 μm. The characteristics of the curcumin-loaded SMPs were evaluated via Raman spectroscopy, confocal microscopy, UV spectrophotometer, and X-ray diffraction (XRD). The results showed that the suspended curcumin was encapsulated in SMPs in amorphous form with a encapsulating efficiency of about 96.36%. Photostability test confirmed that curcumin that is loaded inside SMPs was effectively protected against the photodegradation. Curcumin-loaded SMPs can be used not only in food industry for extending the shelf life of curcumin, but also in pharmaceutical industry to design effective carrier for oral delivery.
        67.
        2017.11 구독 인증기관·개인회원 무료
        Rapid, simple, and sensitive detection of pathogen bacteria is a highly topical research area due to increasingly concerning of food safety and public health. Surface-enhanced Raman spectroscopy (SERS) is a promising and attractive technique offering fast, sensitive, comparatively low-cost, and in-suit detection of pathogenic bacteria. However, this technique requires the preparation step for reducing the noise derived from heterogeneous matrixes of food sample. Immunomagnetic separation (IMS) is widely used technique enabling separation and concentration of the target analyte. It can be used not only laboratory scale but also field diagnosis easily. Here, we synthesized gold-shelled starch magnetic microparticles (GS@SMMPs) for effective separation and concentration of Escherichia coli O157:H7, which were subsequently subjected to SERS integrated with gold-coated 3D-well substrate for bacterial detection in aqueous solution. GS@SMMPs were labelled by Anti-E. coli O157 monoclonal antibody through gold binding protein and staphylococcal protein G (GBP-SPG) fusion protein. In IMS experiment, the immuno-GS@SMMPs showed high capture efficiency over 90% to E. coli O157:H7, which resulted in 10 times decrease in detection limit in PCR assay. Through SERS assay, E. coli O157:H7 concentrated by immuno-GS@SMMPs were successfully detected even at an extremely low concentration of 101 CFU/ml the subjected to SERS. Moreover, by using sandwich method using SERS reporter consisting of GBP-SPG, we found that E. coli O157:H7 were able to be detected by SERS quantitatively through measuring the SERS intensity of GBP-SPG. This novel strategy combining SERS and IMS could be meaningful for extending the application in SERS for in-suit sensitive detection of pathogenic bacteria.
        68.
        2017.11 구독 인증기관·개인회원 무료
        This study investigated the interactions between starch and starch - derived materials and fluorescent materials. Many researchers have used fluorescent materials to monitor the internal structure of starch, which is an effective method. The purpose of this study was to observe the internal structure of starch by using fluorescent material and to check how much fluorescent material could be loaded inside the starch. For this, a standard curve of the fluorescent material was obtained and a linear graph corresponding to the concentration was obtained. Next, the incorporation of the fluorescent material into the starch was confirmed by CLSM in the infusion experiment. Infusion experiments were carried out to quantify the amount of fluorescent substance in starch, but the error was confirmed in this experiment. The error was caused by the action of starch and the fluorescent substances FD4 and NaFl, resulting in an increase or decrease in fluorescence intensity. To find the cause, dextrin, amylose and amylopectin, which are starch-derived substances, and α, β, γ-cyclodextrin, which can form inclusion compounds, were used. The fluorescent materials were merbromin, NaFl, and FITC. As a result, the fluorescence intensity of the fluorescent material was significantly influenced by the concentration of amylose and amylopectin. This result implies that there may be errors in the analysis of the phenomenon or observation of the starch using the fluorescent substance. We still do not know exactly the cause of this phenomenon, so further research is needed.
        69.
        2017.11 구독 인증기관·개인회원 무료
        In plants, starch is the main carbohydrate reserve and an important ingredient in human nutrition. Nutritionally, starch is classified into rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) based on the rate and degree of digestion. RS escapes enzymatic digestion in the small intestine, but in the large intestine microbial flora may ferment some RS. Malic acid is C4 carboxylic acid with two carboxyl groups. It is well known to take from 69% up to 92% of all organic acids in grape berries and leaves and is naturally produced by many organisms without showing any nutritional harm. However, properties of malic acid treated starch has not been clearly reported. The objectives of this study were to investigate the influence of pH value on low-digestible malate starch formation and digestibility in relation to structural properties of corn starch. Different pH values (1.5-8.5) of 2 M malic acid solution were reacted with corn starch in a forced-air oven at temperature of 130°C for 12 hr. Using FT-IR, carbonyl groups were detected in malate starch, indicating the formation of cross-linking by esterification. Increasing pH value of malic acid-treated sample from 1.5 to 8.5 showed an increase in degree of substitution (DS) and resulted in increase in the RS content from 18.2 to 74.8%, which was maintained after gelatinization. The granular structure of malate starches was not destroyed, and the starches maintained birefringence. This malate starch could be utilized in heat processed foods such as bread and cookies as well as in the products with reduced calories.
        70.
        2017.11 구독 인증기관·개인회원 무료
        Curcumin is an active polyphenolic compound with antioxidant, anti-inflammatory and antitumor properties. Curcumin, however, is highly unstable under physiological conditions due to its low stability in acidic and alkaline conditions. Therefore, the objective of this study was to investigate the effects of enzyme-treated rice starch as a wall material on the stability of curcumin in oil-in-water emulsion under different pH conditions. The rice starch was treated using 4-a-glucanotransferase for different time periods and their molecular weight distribution was measured by HPSEC. Curcumin was encapsulated within lipid droplets of O/W emulsion prepared with Tween 20 and the modified rice starch in the aqueous phase at different concentrations (0, 2.5, 7.5 and 10 wt%). The temperature and pH stability of the system were determined respectively by measuring particle size, zeta potential and retention of the curcumin loaded in the emulsion after one-week storage in the solutions with different pH and temperature conditions. The average molecular weight of the modified starch decreased with treatment time. The 96h treated rice starch had the lowest molecular weight while the 1h treated starch mainly consisted of high molecular weight components. The storage temperature did not significantly influence the stability of curcumin emulsion. However, the particle size of the emulsion with modified starch slightly increased when stored at acidic pH condition, which might be attributed to starch aggregation. The curcumin retention was higher for the samples with the modified starch than the control at all concentrations. The pH stability of the curcumin was also higher than the control at all pH conditions. Specifically, the 1h treated starch showed the best performance regarding curcumin protection in emulsion, which might be attributed to the high viscosity that retarded the curcumin release. Further research needs to be conducted on the mechanism.
        71.
        2017.11 구독 인증기관·개인회원 무료
        Starch is classified as fast digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) depending on digestibility. RS can avoid enzymatic digestion in the small intestine, but microbes in the large intestine can ferment some RSs. The purpose of this study was to investigate the structural characteristics of low digestible starch by malic acid mutation in rice, corn and potato starch. Rice, corn and potato starch were treated with a 2M malic acid solution in a forced air oven at 130 ° C for 12 hr. Using FT-IR, carbonyl groups were detected in malate starch, indicating the formation of cross-linking by esterification. And, Using X-ray, diffractograms of malic acid-treated starch. In the micrographs, malate treated corn and potato starch granules were marked with elliptical or polygonal shapes and starch retained birefringence. Through microscopic observe in morphology of starch granules, Microscopic observation did not reveal any changes in morphology of starch granules. The modified starches had higher RS than the control and native starch. RS content of maltitized rice, corn and potato starch was 87.6%, 89.8% and 64.8%, respectively. Malic acid treated RS was maintained after the cooking process. The RS of substituted starches increased with increasing degree of substitution. These results suggest that the increase in RS content by malic acid treatment is caused by the change in the structure. And the highest resistant starch content (86.7%) was found at pH 1.5, 2M of malic acid treated corn starch. Malic acid-treated starch can be used as heat-stable and low-digestible starch containing food ingredients.
        73.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to increase the efficiency of starch extraction from potato sludge by different concentration of food-grade hemicellulase. The potato sludge, which is a by-product of potato processing industry, was treated with food-grade hemicellulase. Starch extraction efficiency displayed no significant difference in hemicellulase concentration. The purities of potato starch increased from 83.40 to 95.91, 97.44, 95.58, and 97.79%, with treated 0.5, 0.75, 1.0, and 1.5% hemicellulase, respectively. The physicochemical properties of the starches, such as granule structure, particle size, pasting, and thermal transition, were not affected by the concentration of hemicellulase. These results indicate that food-grade hemicellulase treatment is an efficient method for starch extraction from potato sludge.
        4,000원
        75.
        2017.04 구독 인증기관·개인회원 무료
        With increasing interests on health issues, whole grains are getting focus with their various beneficial effects along with unique characteristics. Studies on whole grains, however, are mostly focused on whole wheat grains, no systematic researches on whole rice grain has been attempted. In this study, we tried to characterize the starches in whole rice grain including morphology, molecular weight distribution and its side chain structures for further application. Early harvested whole rice grains, named as green whole rice (GWR) was coarsely grounded and starch fraction was separated through alkaline steeping method and dried for the analysis. Morphology of starch particles of GWR was investigated with scanning electron microscopy (SEM) and no significant differences was observed compared to the control rice starches. Pre-treatments such as dehulling and steaming also did not affect overall shape of starches in rice. Molecular weight distribution of GWR starch was analyzed with gel permeation chromatography (GPC) and compared with normal rice starch. GPC analyses revealed that the relative ratio of higher molecular weight fractions in GWR was significantly higher than normal rice. In addition, side chain structures of amylopectin molecules in GWR starch was analyzed with high performance size exclusion chromatography (HPSEC). The average number of DP in GWR was shorter with higher ratio of shorter side chain fractions than normal rice starch. These findings on GWR starch would be useful basement for following research and application of green whole rice.
        76.
        2017.04 구독 인증기관·개인회원 무료
        Starch is an abundant, renewable, and low cost material that has been extensively studied for its role in crystallization. The aim of this study is to develop a convenient and green approach to synthesize starch nanoparticles (StNPs). Short glucan chains were successfully prepared by using pullulanase that could debranch the amylopectin obtained from waxy maize starch. StNPs were prepared via the self-association of short glucan chains, of which the crystallinity structure changed from A-type (native starch) to B-type (starch nanoparticles) through the enzymatic hydrolysis and reassembly process at 4°C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and differential scanning calorimetry (DSC) were used to characterize the morphology and crystalline structure of StNPs. The results showed that the diameter of StNPs ranged from 300 nm to 1.5 μm, depending on the initial concentration of short glucan chains and self-assembly time. The developed approach could produce well-defined and uniform starch nanoparticles that could readily be employed to encapsulate various functional guest molecules in biocompatible starch based nanoparticles in food industry.
        77.
        2017.04 구독 인증기관·개인회원 무료
        Amylose is carbohydrate polymer defined as a linear natural polysaccharide composed of α(1→4) bound glucose units. Due to its abundance, renewable nature, low cost, and biodegradability, this polymer is regarded as a promising green material for producing crystals and particles of different sizes ranging from the nanometer scale to the micrometer scale. Herein, short amylose chains and dextran-coated iron oxide magnetic nanoparticles (Dex@MNPs) were introduced to fabricate individual superparamagnetic amylose microparticles (SAMPs), which have a well-defined spherical shape and a uniform size of about 1 μm. We found that the aggregation of SAMPs can be mediated by the introduced Dex@MNPs in a concentration-dependent manner, indicating that Dex@MNPs, as the seed crystals, play an important role in self-assembly of SAMPs. By using streptococcal protein G tagged with maltose binding protein (MBP-SPG), specific antibody against Escherichia coli O157:H7 was successfully immobilized on the surface of SAMPs. The Ab-functionalized SAMPs showed a high capture efficiency (>90%) comparable to the commercial immunomagnetic microparticles regardless of suspending agents (1X PBS and milk). Moreover, SAMPs exhibited excellent recyclability, in which the Ab immobilized on the surface of SAMPs can be refreshed by using the maltose elution buffer along with the unchanged capture efficiency. In addition, SAMPs were assembled into the linear rod-shape microstructure by the introduced magnetic field during the amylose-mediated precipitation process. The convenient self-assembly of SAMPs with the well-defined size and shape, biocompatibility, tolerance to environmental variances, high magnetic response behavior, and excellent recyclability in the functionalization make these magnetic microparticles promising for many potential applications such as bio-sensing, labeling, and smart delivery of active compounds.
        78.
        2017.04 구독 인증기관·개인회원 무료
        The pace of development of Pickering emulsions stabilized by food-derived particles such as starches and proteins has recently soared to replace conventional emulsions using a large amount of chemical emulsifiers. The protein-stabilized emulsions cannot be transported to small intestine due to its degradation in stomach condition. The starch-stabilized emulsions have a low colloidal stability because of their large size, so they cannot be applied to beverages. In this study, to increase the colloidal stability of starch-stabilized emulsions, starch nanocrystals (SNC) obtained by sulfuric acid hydrolysis were used to stabilize emulsions, and ultrasonic treatment was added to further increase the colloidal stability. An oil-soluble dye (Nile Red) was used to visualize changes in the lipid phase during digestion. Lipid-labeled Pickering emulsions were passed through a simulated gastrointestinal tract consisting of mouth, stomach, and intestinal phases, and changes in lipid location and morphology were monitored using confocal laser scanning microscopy. The lipid droplets were slightly enlarged in the mouth condition, highly flocculated in the gastric condition, and completely digested in the small intestine condition. Our results show that the additional ultrasonication to the SNC-stabilized emulsions resulted in enhanced colloidal stability, and the SNC-stabilized emulsions produced by the above process were stable in the mouth and stomach conditions and completely digested in the small intestine condition. So, the SNC-stabilized emulsions produced through this study could be effectively applied to functional beverages as a chemical emulsifier-free delivery systems.
        79.
        2017.04 구독 인증기관·개인회원 무료
        The aim of this study was to use an in vitro method and estimate glycaemic index (GI) from porridges to determine the digestibility of porridges. Glycaemic index’s concept is to classify foods on the basis of their postprandial blood glucose response. The GI of a foodstuff is generally measured by determining the increment in blood glucose concentration after the consumption of a test meal over a set period of time and comparing it with an isoglucosidic control meal (normally white bread or glucose) and expressed as a percentage. In this study, the 5 porridges were studied for their starch digestibility. The available starch contents of the samples varied from 65~85 g/100 g dry solids. From in vitro digestion, the porridge samples were Medium glycaemic index foods with calculated GIs ranging from 56 to 67.
        80.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate the effects of combinations of tofu paste and non-starch polysaccharides (NSP) on the oil uptake reduction (OTR) of deep-fat fried cake doughnuts. OTR agents were tofu paste (from grinding tofu with deionized water, followed by passage through a 60 mesh sieve), and five neutral and nine anionic NSPs. A control doughnut (without tofu paste or NSP), tofu doughnut (with tofu paste) and NSP-tofu doughnut (with tofu paste and NSP) were prepared. The moisture and total lipid (TL) content, cross-section image, color characteristic, and specific volume were measured. The tofu and NSP-tofu doughnuts exhibited higher moisture and lower TL content than the control. OTR was 10.8% for the tofu doughnut, and between 13.2% and 41.2% for the NSP-tofu doughnut. The highest OTR (41.2%) was found in the NSP-tofu doughnut with a combination of tofu paste and sodium alginate (NaA). The specific volume of the NSP-tofu doughnuts with combinations of tofu paste with NaA (2.5 mL/g), locust bean gum (2.5 mL/g), and κ-carrageenan (2.4 mL/g) was very close to that of the control (2.6 mL/g). Considering the OTR and specific volume of doughnuts, the combination of tofu paste and NaA would be most effective in reducing the oil uptake of doughnuts during deep-fat frying.
        4,000원
        1 2 3 4 5