검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
        5,200원
        2.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers (ACFs) were treated by electroless plating of CuO to improve their removal performance for volatile organic compounds (VOCs). The properties of these samples(CuO@ACFs) were evaluated by X-ray photoelectron spectroscopy (XPS), BET and N2O chemisorption to determine the area and dispersion of metallic CuO. The removal efficiency for benzene was investigated by gas chromatography (GC). The breakthrough time of CuO@ACFs increased by approximately 120% compared to that of untreated ACFs at benzene of 100 ppm. CuO@ACFs removed 100% of the benzene in 20 h, indicating this material can be used as a removal technology for VOCs.
        4,000원
        4.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Organic-inorganic hybrid perovskite nanocrystals have attracted a lot of attention owing to their excellent optical properties such as high absorption coefficient, high diffusion length, and photoluminescence quantum yield in optoelectronic applications. Despite the many advantages of optoelectronic materials, understanding on how these materials interact with their environments is still lacking. In this study, the fluorescence properties of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanoparticles are investigated for the detection of volatile organic compounds (VOCs) and aliphatic amines (monoethylamine, diethylamine, and trimethylamine). In particular, colloidal MAPbBr3 nanoparticles demonstrate a high selectivity in response to diethylamine, in which a significant photoluminescence (PL) quenching (~ 100%) is observed at a concentration of 100 ppm. This selectivity to the aliphatic amines may originate from the relative size of the amine molecules that must be accommodated in the perovskite crystals structure with a narrow range of tolerance factor. Sensitive PL response of MAPbBr3 nanocrystals suggests a simple and effective strategy for colorimetric and fluorescence sensing of aliphatic amines in organic solution phase.
        4,000원
        5.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
        4,200원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The consumer products in the living environments include a variety of chemicals which could be harmful in the human health. The aim of this study was to assess the inhalation exposure and risk for cleaning workers who had used bleach in the university. A total of 81 cleaning workers took part in this study. Frequency and amount of cleaning bleach during working hours were investigated by questionnaire interviews. Exposure assessment was used by the exposure algorithm and exposure factors. Used cleaning bleaches were analyzed to identify the ingredients, and risk by exposure was assessed by separating as carcinogen and non-carcinogen substances. The results of chemical substances and the questionnaire were used to assess the exposure factors, and the inhalation doses were calculated through inhalation exposure algorithm. According to the questionnaires for the cleaning workers, frequence of cleaning bleach was 11.66 ± 7.21 times per month. And average usage time and amount per cleaning work were 30.78 ± 36.00 minute and 20099.53 ± 12998.60 mg, respectively. Risks for carcinogenic substances of formaldehyde, ethylbenzene, and chloroform were exceeded by 56.79%, 27.16%, and 82.72% as the reference value of 10−6, respectively.
        4,000원
        7.
        2013.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The children of daycare center are sensitive to indoor environmental pollution. This study was a preliminary investigation for improving the environmental and healthy quality of daycare centers. The sampling of sites in daycare centers was undertaken three times such as day-morning (10:00-12:00), afternoon (16:00-20:00), following dawn (04:00-08:00)-at 21 daycare centers located in Seoul, Korea from April, 2012 to July, 2012. The mean concentrations of TVOC were 255.2, 217.0, and 439.4 μg/m3 at morning, afternoon, and following dawn, respectively. The daycare center indoor/outdoor ratios on the most targeted volatile organic compounds were above 1.0 except that for carbon tetrachloride, which was almost 1.0. Significant correlations (p<0.01) were observed between indoor and outdoor carbon tetrachloride, which implies that indoor carbon tetrachloride could be largely accounted for by outdoor sources. The other targeted indoor volatile organic compounds such as benzene, toluene, ethylbenzene, styrene, xylenes, chloroform showed no significant correlations with that of outdoor.
        4,600원
        8.
        2011.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        There has been a growing concern about the emissions of formaldehyde and VOCs from automotive interior materials which could have an important impact on the in-vehicle air quality(IVAQ) of automotive vehicles. Many leading automobile manufacturers have now introduced their own specification standards for testing and limiting emissions from products produced by their suppliers. In addition, ISO (International Standard Organization) has been established ISO 12219-1, 2, 3, 4, 5 to determine the emissions of volatile organic compounds from automotive vehicle. The objective of this paper is to compare the area specific emission rates determined from surface emissions testing using the microchamber(MC) in comparison with a 1 m3 emission test chamber(ETC) operated in accordance with ISO 12219-3, ISO 12219-4. Measured emission concentrations in absolute terms were different between Microchamber and 1 m3 chamber. However, qualitative comparison of the chromatograms shows that the Microchamber is able to perform a screening test
        4,300원
        9.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        21종류의 폴리스티렌 용기를 대상으로 용출조건에 따른 용기내 증류수로 용출되는 5종의 VOCs(톨루엔, 스티렌, 에틸벤젠, 이소프로필벤젠 및 n-프로필벤젠)를 Purge&Trap 장치를 연결하여GC-FID로 분석하였다. 각 표준물질은 1~50 ng/ mL의 농도범위에서 직선성(r2 =0.9976~0.9995)을 나타냈으며, 검출한계는 0.041~0.092 ng/mL, 정량한계는 0.135~0.304 ng/mL 이었다. 용출조건은 첫째, 60oC에서 30분, 둘째, 95oC에서 30분, 셋째, 실생활에서 컵라면 섭취시를 고려하여 끓은 물을 부은 후 뚜껑을 덮고 3분간 유지한 다음 뚜껑을 열고 5분 동안 개방하여 용출시키는 것으로 설정하였다. 톨루엔, 에틸벤젠, 이소프로필벤젠 및 n-프로필벤젠은 평균용출량이 모든 조건에서 5 ng/mL 이하로 검출되었으며 스티렌의 경우는 60oC에서 평균용출량이 4.02 ng/mL, 95oC에서는 52.71 ng/mL, 컵라면 섭취시의 조건에서는 17.23 ng/mL로 검출되었다.
        4,000원
        10.
        2006.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study was undertaken to investigate the concentration of VOCs from newly built apartments in three cities (Suncheon, Yeosu, and Gwangyang) of Honam province in Korea. VOCs were sampled using canister and analyzed by GC/MSD. The result of the canister blank test showed that, most VOCs were not detected when 5 ppb was cleaned once and 10 ppb was cleaned with two times. In case of the replicate alalysis to check for the precision of GC/MSD, RSD values were found to be excellent at 6%. The upper floor of C apartment (25 pyong) showed the highest concentration of TVOCs at 3,235 ㎍/㎥. The average concentration of TVOCs was the highest in C apartment (25 pyong) as 1,833±1,217 ㎍/㎥. The average concentration of TVOCs in K (52 pyong) and S apartment (16 pyong) were 1,820±1,035 ㎍/㎥ and 498±71 ㎍/㎥, respectively. The I/O ratio of TVOCs were 8.99∼35.90 (mean : 25.99), 11.51∼35.43 (mean : 20.07) and 6.03∼7.90 (mean : 6.92) in K, C and S apartment, respectively. From these results, it is believed that the concentration of TVOCs was comparatively high in new apartment. Therefore, it is important to use low VOC emission materials to reduce the emission concentration of VOCs from in new apartment. It is hence necessary that a scientific study is performed to secure clean indoor air quality.
        5,100원
        11.
        2006.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study was performed to estimate the emission rate of volatile organic compounds (VOCs) and to evaluate the risk level affected by indoor air pollutants (IAPs) in 27 new apartments (prior to residence) in Seoul City from December 2004 to March 2005. The indoor air pollutants investigated in this study include formaldehyde, several aromatic VOCs (benzene, toluene, styrene, xylene, and ethylbenzene). All measurements were made based on the standard method of Ministry of Environment in Korea. The indoor concentration levels for benzene, xylene, toluene, ethylbenzene, styrene, and formaldehyde have significant increase trend 5 hours after closing windows and doors. Levels of air pollutants did not exhibit significant difference between living rooms and bedrooms. The air exchange rates by the concentration decay method using SF6 were 0.37 for low floor, 0.32 for middle floor, and 0.75 for high floor. The emission rate showed the highest level in the middle floor and second one in the low floor, when estimated by the IAQ model for benzene, toluene, ethylbenzene, xylene, styrene, and formaldehyde. Considering the above result, it is suggested that the estimation of emission rate be considered when the new apartment is designed and constructed with respect to construction materials to emit low VOCs. Moreover, the related regulation should be established for IAQ management.
        4,500원
        12.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        In order to study the seasonal patterns and possible origins of air concentrations of volatile organic compounds(VOC), measurements were taken with GC-MS at 3 sampling sites in Jinju for 12 months from Mar. 2010 to Feb. 2011. Atmospheric VOC are sampled on tubes containing solid adsorbents(Tenax TA) with a time resolution of 2hrs. Composition and concentration of VOC are analysed with a GC system equipped with thermal desorption apparatus(ATD). The most abundant compound appeared to be Toluene, Ethylbenzene and m,p-Xylene. The mean concentrations of Benzene were 0.20 ppb at GN site, 0.18 ppb at DA site, and 0.25 ppb at SP site, respectively. VOC concentration showed a strong seasonal variation, with higher concentrations during the spring and lower concentrations during the summer. The results showed that monthly fluctuations in measured VOC concentrations depended on variations in the strength of sources, as well as on photochemical activity and meteorological conditions. In Jinju, the total VOC emissions for 2009 were estimated to be 4,407 ton/year by Clean Air Policy Support System(CAPSS). It is shown that solvent use 57.5%(2,534 ton/yr), waste treatment and disposal 23.3%(1,025 ton/yr), and mobil source-road traffic 12.2%(537 ton/yr) are the most significant anthropogenic source.
        13.
        2003.07 KCI 등재 서비스 종료(열람 제한)
        The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.