검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,755

        539.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An eco-friendly material was synthesized through interfacial polymerization of aniline on particles of g-C3N4 with arginine, resulting in Arg-PANI@g-C3N4 composite. The as-synthesized composite was characterized by the Brunauer, Emmett, and Teller (BET) surface area, X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption capability of as-synthesized composite towards Orange G (OG) dye has been evaluated under several experimental conditions, such as the adsorbent dosage, initial dye concentration, contact time under agitation, pH of dye solution and temperature. Thermodynamics parameters such as free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) were also calculated and suggested that the adsorption process is spontaneous and endothermic in nature. The kinetics data revealed that the adsorption of OG dye onto Arg-PANI@g-C3N4 follows the pseudo-second order kinetics model. The maximum adsorption capacity was found to be 80.54 mg·g−1. Furthermore, the Arg-PANI@g-C3N4 surface exhibited a Langmuir-like adsorption isotherm in contrast to a Freundlich isotherm due to homogeneous active site distribution. Regeneration investigation showed the excellent reusability of Arg-PANI@g-C3N4 composite during the cleaning up of solution containing OG dye molecules.
        4,300원
        540.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a promising anode for sodium-ion batteries (SIBs), cobalt sulfide ( CoS2) has attracted extensive attention due to its high theoretical capacity, easy preparation, and superior electrochemical activity. However, its intrinsic low conductivity and large volume expansion result in poor cycling ability. Herein, nitrogen-doped carbon-coated CoS2 nanoparticles (N–C@ CoS2) were prepared by a C3N4 soft-template-assisted method. Carbon coating improves the conductivity and prevents the aggregation of CoS2 nanoparticles. In addition, the C3N4 template provides a porous graphene-like structure as a conductive framework, affording a fast and constant transport path for electrons and void space for buffering the volume change of CoS2 nanoparticles. Benefitting from the superiorities, the Na-storage properties of the N–C@CoS2 electrode are remarkably boosted. The advanced anode delivers a long-term capacity of 376.27 mAh g− 1 at 0.1 A g− 1 after 500 cycles. This method can also apply to preparing other metal sulfide materials for SIBs and provides the relevant experimental basis for the further development of energy storage materials.
        4,000원