검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 340

        241.
        2018.10 서비스 종료(열람 제한)
        Background : Light-Emitting Diodes (LEDs) have been reported to alter the composition of the secondary metabolites present in many plants. For example, light exposure has been reported to significantly affect secondary metabolite biosynthesis in plants, and irradiance levels have been reported to affect the concentration and production of both phenylpropanoids and carotenoids. Therefore, the objective of the present study was to determine the most effective LED light source in enhancing growth and secondary metabolites (polyphenols and carotenoids) and investigate the effect of LED illumination on production the of primary and secondary metabolites (polyphenols and carotenoids) in Vigna unguiculata L. Walp. sprouts Methods and Results : In order to determine the effect of light-emitting diodes (LEDs) on plant metabolism, the present study examined the primary and secondary metabolite profiles of Vigna unguiculata L. Walp. sprouts that were exposed to red, blue, white, or a combination of red and blue LEDs using high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), gas chromatography-mass spectrometry (GC-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). A total of 39 hydrophilic compounds were identified and quantitated using GC-TOF-MS, and six phenylpropanoids and six carotenoids were quantified using HPLC. The plants grown under blue LED light contained the highest level of total carotenoids (253.72 ± 17.27 ㎍/g) and phenylpropanoids (2,600.51 ± 4.90 ㎍/g). Thus, the current study provides a new approach for enhancing the carotenoid and phenylpropanoid production of V. unguiculata. Conclusion : This study suggests that blue LED light source is the most appropriate for the sprout growth and production of phenolic compounds and carotenoids in cowpea sprouts. Furthermore, these findings confirm that HPLC, GC-MS, and GC-TOF-MS are suitable for investigating metabolic relationships and offer a tenable strategy for enhancing secondary metabolite production using LED light sources.
        242.
        2018.10 서비스 종료(열람 제한)
        Background : Morus alba L. (M. alba L.) belongs to the family Moraceae and has been industrially used as a food source for the silkworm and as a sedative in traditional medicine due to their adaptogenic, hypotensive, anti-inflammatory, hypoglycemic, and anti-adipogenic properties. In this study, metabolic profiling of diploid and tetraploid in Morus alba L. ‘Cheongil’ Methods and Results : Carotenoids are secondary metabolites found in most of the higher plants. In the current study, the levels of carotenoids were much higher in tetraploid of M. alba L. ‘Cheongil’ than diploid of M. alba L. ‘Cheongil’. Particularly, the levels of lutein, 13z-β-carotene, α-carotene, E-β-carotene, and 9Z-β-carotene were 2.51, 5.53, 7.68, 4.43, and 4,46 times higher in tetraploid of M. alba L. ‘Cheongil’, respectively. Additionally, hierarchical cluster analysis (HCA) was carried out using Pearson’s correlation results in order to determine the relationships between metabolites of diploid and tetraploid in Morus alba L. ‘Cheongil’. The results of HCA revealed the degree of correlation among 42 metabolites, which were identified and quantitated by GC-TOFMS. Among TCA organic acids, succinic acid was positively correlated with fumaric acid (r = 0.8250, p < 0.0001) and malic acid (r = 0.9436, p < 0.0001). Among carbohydrates, fructose was positively correlated with glucose (r = 0.9398, p < 0.0001) and mannose (r = 0.9394, p < 0.0001). Conclusion : In this study, we investigated primary metabolites and secondary metabolites (carotenoids) in diploid and tetraploid in Morus alba L. ‘Cheongil’ in order to provide information on the difference between
        243.
        2018.10 서비스 종료(열람 제한)
        Background : Morus alba L. (M. alba L.), belonging to the family Moraceae, is widely distributed in East Asia. Fruits of M. alba L. have been used in traditional herbal medicine due to their antioxidant, anticancer, and antidiabetic properties. Phenolics play a main role for the growth, development, and pigment accumulation of plants. In this study, metabolic profiling of white (M. alba L. ‘Turkey’) and red (M. alba L. ‘Cheongil’) fruits during maturation. Methods and Results : Phenolic compounds are secondary metabolites found in most of the higher plants. In the current study, the levels of phenolic compounds decreased during the maturation of Turkey and Cheongil fruits. Particularly, the Turkey fruits showed a dramatic decrease in the accumulation of phenolics. Principal component analysis (PCA) is one of powerful tools to identify overall patterns in the multivariat experimental data. The PCA score plots results revealed a clear classification between Cheongil and Turkey. Additioanlly, each group spread left to right in the X-axis by maturity. Two principal components of the score plot explained 71.1% of the total variance. Principal component 1 was associated with the separation of each group by maturity and isolation of Turkey 1. Conclusion : In this study, we investigated primary metabolites and secondary metabolites (phenolics) in the white fruits (M. alba L. ‘Turkey’) and red fruits (M. alba L. ‘Cheongil’) in order to provide information on change in metabolite patterns during maturation.
        244.
        2018.10 서비스 종료(열람 제한)
        Background : Galantamine is mainly obtained from the bulbs and flowers of Galanthus caucasicus, Galanthus woronowii, and other related genera such as Narcissus tazetta, Narcissus pseudonarcissus, Leucojum aestivum, and Lycoris radiata. Galantamine is used to treat Alzheimer’s disease (AD) and as an AD painkiller. Narcissus tazetta (N. tazetta), belonging to the Amaryllidaceae family, is a ornamental plant containing galantamine. In this study, metabolic profiling of N. tazetta different organs was performed. Methods and Results : The amount of galantamine in bulb of N. tazetta is the highest levels. About 0.61 ± 0.09 ㎎/g in bulb, 0.15 ± 0.17 ㎎/g in root, and 0.10 ± 0.0 ㎎/g in leaf. Contents of galantamine in root and leaf are not statistically significant. The total phenolic contents in leaf are the highest level. Rutin and kaempferol are identified all part of N. tazetta. On the other hands, 4-hydroxybenzoic acid is existed in leaf and caffeic acid is only existed in root. None of the bulbs except rutin and kaempferol are identified. Because plant secondary metabolism is closely related to plant primary metabolism, we used GC-TOF-MS on the levels of hydrophilic low-molecular-weight molecules in the N. tazetta. A total of 41 metabolites, including sugars, amino acids, organic compounds, and phenolic acids, were identified and measured, and the resulting quantitative data were subjected to principal components analysis (PCA). The results of PCA of metabolic profiles clearly showed the lack of marked variance among different organs of L. radiata. Two principal components of the score plot explained 86.79% of the total variance (component 1; 55.40%, component 2; 31.39%). Component 1 resolved the separation of leaves from the other plant parts. Conclusion : Narcissus tazetta belongs to amaryllidaceae family. These family has various alkaloids, in particular, galantamine is beneficial to Alzheimer patients. All parts of N. tazetta produce galantamine, in particular, the highest level is existed in the bulb. In contrast, phenolic compounds are identified
        245.
        2018.10 서비스 종료(열람 제한)
        Background : Members of Amaryllidaceae family produce several alkaloids with unique structures and a variety of medicinal properties. Galantamine, in particular, is one of the alkaloids approved by the Food and Drug Administration (FDA), and the European Registration Bureau for treatment of Alzheimer’s disease. Lycoris radiata (L. radiata), belonging to the Amaryllidaceae family, is a bulbous plant containing galantamine, which exhibits selective and dominant acetylcholinesterase inhibition. In this study, metabolic profiling of L. radiata different organs was performed. Methods and Results : Galantamine in root, bulb, and leaf of L.radiata analyzed by high performance liquid chromatography (HPLC). The amount of galantamine in leaf is about 1.07 ± 0.17 ㎎/g and it is the higher than bulb (0.88 ± 0.01 ㎎/g) and root (0.75 ± 0.01 ㎎/g). These results are statistically significant. Six phenolics are identified in L. radiata through high performance liquid chromatography. Total amounts of phenolics are the highest in bulb. Because plant secondary metabolism is closely related to plant primary metabolism, we used GC-TOF-MS on the levels of hydrophilic low-molecular-weight molecules in the L. radiata. A total of 41 metabolites, including sugars, amino acids, organic compounds, and phenolic acids, were identified and measured, and the resulting quantitative data were subjected to principal components analysis (PCA). The results of PCA of metabolic profiles clearly showed the lack of marked variance among different organs of L. radiata. Two principal components of the score plot explained 89.4% of the total variance (component 1, 51.86%; component 2, 37.54%). Component 1 resolved the separation of leaves from the other plant parts. Conclusion : Amaryllidaceae family synthesize galantamine belonging to alkaloids. Particularly, in bulb of Lycoris radiata, galantamine contents are the highest level. Thus, bulb is very beneficial for Alzheimer’s disease because the galantamine is well known as treatment of dementia of Alzheimer type.
        246.
        2018.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        식물의 이차 대사산물은 다양한 생물활성을 가지며 자외선은 이차 대사산물의 생성에 영향을 미치는 것으로 알려져 있다. 뽕나무는 다양한 종류의 유용 성분을 함유하여 활용가치가 높은 식물 중의 하나이다. 본 연구에서는, UV 조사에 따른 뽕나무 잎의 이차 대사산물의 변화를 조사하기 위하여, 뽕나무 잎을 LC-MS를 이용하여 무표적 분석법으로 분석하였으며, 무표적 분석으로 얻은 scan data를 bioinformatics 프로그램인 R의 XCMS package를 이용하여 profiling 한 결과, 적어도 35종 이상의 화합물에서 UV-C 조사에 따른 양적인 변화가 발견되었다. 이들 중 14종의 화합물은 분리 및 NMR spectrum 비교 또는 표적 분석을 통하여 종류를 확인하였으며, 종류가 확인된 성분에 대해 정량분석을 수행한 결과, morin(464배), oxyresveratrol(256배), 2,3-trans-dihydromorin(170배), 2",4",2,4-tetrahydroxychalcone(120배), catechin(84배), 4"-prenyloxyresveratrol(43배), moracin M(35배) 등의 함량이 현저하게 증가한 것으로 나타났다. 또한 UV-C를 조사한 뽕나무 잎은 대조구에 비하여 항산화 활성이 2.1-2.4배, tyrosinase 억제 활성이 2.3배 증가한 것으로 조사되었다. 이러한 조사 결과는 자외선의 조사가 뽕나무 잎의 기능성을 향상시켜 기능성 식품, 약용 또는 화장품 소재로서의 활용 가치를 향상시키는 유용한 수단이 될 수 있음을 보인다.
        247.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        본 실험은 비 전리방사선인 가시광선을 조사한 미생물에서의 생리적 대사특징을 연구하였다. 이 실험에 사용된 미생물은 화학합성미생물인 Phodospirillum Rubrum KS-301이었다. glucose의 회분발효를 수행하였고 발효결과는 테이터의 기초가 되었다. 첫째, 비 전리방사선인 가시광선을 조사를 안 할 때의 잔류 glucose(기질량)량을 5.03 g/L -2.17 g/L로 감소하면은 균체량은 1.08 g/L - 3.14 g/L로 수소생성량은 0.02 g - 0.19 g로 증가 하였다. 둘째, 비 전리방사선인 가시광선을 조사 할 때의 잔류 glucose(기질량)을 13.17 g/L - 5.2 g/L로 감소하면은 균체량은 4.7 g/L - 10.57 g/L로 수소생성량은 0.186 g - 0.3 g로 증가 하였다. 이 실험결과를 종합해 볼 때 비 전리방사선인 가시광선을 조사한 미생물에서의 생리적 대사특정으로는 가시광선을 미생물에게 조사한 결과 생명의 활동이 활발하게 일어나고 있음을 알았고 그 반대로 다양한 연구논문에 따르면 감마선, 엑스선, 전자선을 조사한 미생물에서는 세포치사나 세포의 기능적, 형태학적 장해를 나타내었음을 알 수가 있었다.
        248.
        2018.05 서비스 종료(열람 제한)
        Background : Tropospheric ozone (O3) is a secondary air pollutant that negatively affects numerous agricultural crop and forest. The tropospheric ozone is constantly increasing due to fossil fuel air pollutants. Here, we study the response of tartary buckwheat to ozone gas includes physiological and biochemical changes such as change in gene expression and metabolism. Methods and Results : Tartary buckwheat plants have green stems and leaves under normal conditions, while the plants exposed to the ozone have red stems and reddish green leaves. The expression of most flavonoid biosynthetic genes were significantly upregulated in ozone-treated buckwheat plants, exceting the expression of FtF3’H2. The contents of two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were significantly increased by ozone treatment. From the metabolic profiling based on the GC-TOF-MS analysis, we identified the effect of ozone on thirty-five metabolites, including sugars, amino acids, and organic acids. Most of the metabolites result in significantly decreased or nearly remain unchanged in the ozone-treated plants compared with untreated plants, excepting alanine, proline, tryptophan, sucrose, and raffinose. To identify the effect of ozone on the leaf, we analyzed the epidermal cells on the leaf surface by scanning electron microscopy. Interestingly, amount of epidermal cells were partially destructed in ozone-treated plants. Conclusion : By analyzing both primary and secondary metabolites of tartary buchwheat without or with ozone, we identified that ozone affects the modulation of the metabolites as well as gene expression in tartary buchwheat.
        249.
        2018.05 서비스 종료(열람 제한)
        Background : To evaluate the quality of Glycyrrhizae radix (licorice), a popular herbal medicine in Korea, it is necessary to investigate the component profiles of the Glycyrrhiza species distributed in Korean market. Specifically, to control the quality of Korean Glycyrrhizae radix preparations including raw materials, glycyrrhizin (> 2.5%) and liquiritigenin (> 0.7%) has been used as a standard marker compound in Korea Food and Drug Administration (KFDA). To the best of our knowledge, there have been only a few studies regarding the fingerprinting techniques and metabolomics approach of the phytochemicals in Glycyrrhizae radix in Korean market. Therefore, it is necessary to develop a validated method for botanical raw material (BRM) standardization. Methods and Results : Twenty-one Glycyrrhizae radix (G. glabra, G. uralensis, and G. glabra × G. uralensis) were analyzed by UPLC-QTOF-MS and were estimated to statistical and multivariate analysis. Large scale multi-targeted metabolic profiling and fingerprinting techniques were utilized to access a broader insight into the chemical composition of Glycyrrhiza species. The UV/VIS spectra, and MS data (accurate mass and fragmentation pattern in negative mode) of the components in the BRM of G. glabra, G. uralensis, and G. glabra × G. uralensis (incorporation and hybridization) were analyzed with multivariate analyses. Interestingly, UPLC-QTof-MS derived PCA analysis and fingerprinting techniques was found to be effective techniques in the classification of species based on genetic and/or geographical origins. In addition, the revealed metabolite markers could be utilized as a guidance for the BRM standardization as well as a database for quality control of commercial products containing Glycyrrhizae radix. Conclusion : From the above results, the revealed metabolite markers could be utilized as a guidance for the BRM standardization as well as a database for quality control of commercial products containing Glycyrrhizae radix.
        250.
        2018.05 서비스 종료(열람 제한)
        Background : This study was performed to investigate the morphological and growth characteristics and metabolomics approach for the diploid and tetraploid Polygonum multiflorum Thunb (PMT). Methods and Results : The present study was performed to investigate the effective induction method of tetraploid plants using colchicine treatment. To know the morphological and growth characteristics of PMT overground growing was investigated about the stem diameter, leaf length and width, a scape, inflorescence length, chlorophyll, seed length and seed width. Metabolite profiles from P. multiflorum were analyzed by an ultra performance liquid chromatography–quadrupole - time of flight (UPLC-Q-TOF) mass spectrometry (MS). The number of stomata and chlorophyll content was also higher in tetraploid. However, the physiological and morphological characteristics of the newly developed tetraploid showed noticeable results compared to the diploid plant. Also, the inherent characteristics of a newly acquired tetraploid also exhibited better results compared to diploid. Twenty one compounds including catechins from leaf and thirty compounds including stilbenes from roots were identified as major metabolites of PMT. The levels of most root metabolites except dethiobiotin, epigallocatechin gallate, procyanidin B1, epiafzelechin 3-O-gallate, and moupinamide from PMT were higher than those of diploid. The levels of 2,3-digalloylglucose, fallacinol, tricin, physcion-8-O-β-D-glucoside, torachrysone-8-O-β-D-glucopyranoside, questin, aloe-emodin 8-O-(6′-O-acetyl)-glucoside, polydatin, 2,5-dimethyl-7-hydroxychromone, 3,5,4'-trihydroxystilbene, aloe-emodin, myrciacitrin II and ω-hydroxyemodin from teraploid PMT were 342, 32, 31, 21, 11, 11, 9, 8, 6, 5, 4, and 2 times, respectively, higher. Conclusion : From above results, overground growing of tetraploid P. multiflorum is fairly better than that of native P. multiflorum.
        252.
        2017.05 서비스 종료(열람 제한)
        Background : Pachyrhizus erosus (Leguminosae), locally called as “Yam bean” is a traditional medical plant that grows in the tropical and subtropical region. The root of P. erosus is used by the local people to treat insomania, treatment of osteoporosis and extracts of this plant have shown antioxidant activity, immunomodulatory activity, tyrosinase inhibitionby, antitumour properties and cardiovascular benefit. Methods and Results : Free radical scavenging activity was evaluated using α-tocopherol and butylated hydroxy toluene (BHT) as standard antioxidants. The radical scavenging activity was measured using the stable radical 1,1-diphenyl–2-picrylhydrazyl (DPPH) and ABTS assay. Total phenolic content was determined by following Folin-Ciocalteau colorimetric method and Total flavonoids were determined using aluminium chloride calorimetric methods. Phenolic compound concentration and compositions were determined by HPLC-MS/MS system. Seedlings grown under the flourescent light (Fl) exhibited the highest DPPH radical scavenging activity when compared to the plants treated with light emitting diodes (LEDs) and light emitting plasma (LEP). LED-Blue showed the higher DPPH radical scavenging activity and ABTS concentration of PE compared to other LEDs. The accumulation of phenolic compounds increased under different white-LEDs conditions as compared to LEP and FL light conditions. Conclusion : In this study, antioxidant activity and phenolic compound composition of P. erosus was improved by the application of LED and LEP.
        253.
        2017.05 서비스 종료(열람 제한)
        Background : Although ginseng has various bioactive compounds in it, there is lack of study on the variations of bioactive compounds in ginseng according to the cultivation soil and the applied fertilizer types (or amount). Therefore, this study aims to examine the variations of 37 fatty acids (FA) and 8 vitamin E (Vit-E) vitamers in 6-year-old ginseng root cultivated in different soil types with different fertilizers regimes. Methods and Results : The profiling of 37 FAs and 8 Vit-E vitamers in 6-year-old ginseng roots was measured by gas chromatography coupled with a flame ionization detector, and then these results were statistically analyzed with chemometrics. The FA and Vit-E content in ginseng roots varied significantly with respect to soil cultivation conditions due to organic fertilizer types and amounts used. Unsaturated FA in ginseng is approximately 2.7 fold higher than the saturated FA. Linoleic, palmitic, and oleic acids were the most abundant FAs found in the ginseng roots. Also, the major Vit-E vitamer found in ginseng root is α-tocopherol. In particular, the application of rice straw compost or food waste fertilizer was increased to create nutritionally desirable FAs and bioactive Vit-E in ginseng root. In addition, phytonutrient profiling coupled with chemometrics can be used to discriminate the cultivation conditions of ginseng. Conclusion : This study extends our understanding about the variations of FA and Vit-E in ginseng root depending on cultivation conditions. Hence, these results can be useful as basic information for reliable ginseng production containing high amounts of phytonutrients in a paddy-converted field.
        254.
        2017.05 서비스 종료(열람 제한)
        Background : The study about cultured wild ginseng root (Panax ginseng C. A. Meyer) have been reported mainly ginsenosides in saponins family. However metabolites of fermented wild ginseng roots by microorganisms was not reported yet. Methods and Results : Cultured wild ginseng roots were used for fermentation of ginseng roots using Pediococcus pentosaceus and other bacterial strains. We analyzed different types of ginsenoside contents, metabolite and enzyme contents, and gene expression by using microorganisms. Results showed considerable differences in ginseonoside contents specially Rk1 and Rg5. The highest enzyme activity level was by Glutathione reductase (GR) and Glutathione S transferase (GST) in fermented ginseng roots than control (non-fermented), whereas Glutathione peroxidase (GPX) and Peroxidase (POD) contents were reduced. Score plots and loading plots of principal components 1 of the PCA result obtained from the data on 43 metabolites in fermented wild ginseng root of five conditions. The concentration of metabolite such as β-alanin and 4-aminobutyric acid (GABA), which is used to improve memory were increased in fermented ginseng roots than control. We found functional gene in wild ginseng root related with metabolic process. The APX gene expression gradually increased in fermented ginseng root with respect to fermentation times. Conclusion : In this study, accumulation of functional metabolite in cultured ginseng r
        255.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Menopause is characterized by a decrease in estrogen production by the ovaries. Furthermore, the risk of developing chronic diseases including cardiovascular disease, obesity, and diabetes increases in menopausal women. In this study, we evaluated the ability of Caragana sinica (CS) to affect lipid and glucose metabolism in an ovariectomized Sprague-Dawley rat model of induced menopause. The animals were divwided randomly into three groups: sham-operated rats (SHAM), ovariectomized rats (OVX), and ovariectomized rats treated with 1% water extract of CS (OVX-CS). The OVX-CS treated mice showed a significant decrease in body weight, adipose tissue, triglyceride, and total cholesterol. Improved lipid and glucose profiles were also observed, and were attributed to suppression of hepatic lipogenesis and adipokine production and regulation of glucose-regulating enzyme activity. Therefore, these findings indicate a potential use for CS as a functional food for menopause-induced hyperlipidemia and hyperglycemia.
        256.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Background: Many menopausal women suffer from health problems including metabolic diseases such as dyslipidemia and osteoporosis. Thus they need natural products and functional foods particularly highly nutritional food products, that can help alleviate these diseases. This study was carried out to determine the effect of Drynariae Rhizoma water extract on the lipid and bone metabolism of ovariectomized Sprague-Dawley rats.Methods and Results: The animals were randomly divided into six dietary groups comprising SHAM-operated rats, OVX rats (normal diet), and OVX-DR rats (Drynariae Rhizoma extract). After 8 weeks, plasma, liver, and fat samples were collected to analyze the lipid metabolism, plasma Ca, alkaline phosphatase (ALP), osteocalcin and C-terminal telopeptide (CTx) concentrations, which are biochemical makers of bone metabolism. The left femurs of rats were also collected for histological analyses. OVX counteracted menopause induced body weight gain, as well as increases in triglycerides, total cholesterol, and free fatty acids. The Drynariae Rhizoma group showed low levels of triglycerides, high HDL-cholesterol, and decreased lipogenesis based on activity of the lipid-regulating enzymes (fatty acid synthase and malic enzyme). Decreased serum levels of ALP and osteocalcin were observed in Drynariae Rhizoma group.Conclusions: The results of this study show that Drynariae Rhizoma extract may effectively regulate hyperlipidemia and improve bone density.
        257.
        2016.10 서비스 종료(열람 제한)
        Background : The genus of Mentha contains more than 25 species and has been used as cuisines, medicines, cosmetics, oral hygiene products, pharmaceuticals, pesticides, and flavor enhancing agent. Due to economical value of these species, many studies have identified and isolated the beneficial constituents such as flavonoids, terpenoids, and volatile compounds. In this study, the primary and secondary metabolites were investigated from the aerial parts of nine different Mentha species including peppermint (M. piperita), pennyroyal mint (M. pulegium), spearmint (M. spicata), horse mint (M. longifolia), water mint (M. aquatica), apple mint, pineapple mint (M. suaveolens), and chocolate mint, eau de cologne mint (M x piperita hybrids). Also, we reported the antioxidant properties using extracts of obtained plants. Methods and Results : In total, 67 metabolites were detected using gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The difference among nine Mentha spp. by principal components analysis has been investigated. Various phenoilic compounds and carotenoids were characterized quantified in Mentha plants by HPLC. Of these, rosmarinic acid was found to be rich in most of this family. In addition, the highest content of riboflavin were indicated in spearmint. Moreover, the highest antioxidant activities (88.6 % 100 μl/ml in DPPH assay, 76.2% 100 μl/ml in hydrogen peroxide radical scavenging activity, and 0.076 absorbance in reducing power assay) have been shown in horse mint. Conclusion : We determined the differences in accumulation of primary and secondary metabolites (phenolic compound, carotenoid, and riboflavin) among nine Mentha species. Totally, 67 primary metabolites were identified and compared the difference by principal components analysis. Besides, horse mint has the highest and strongest antioxidant activities compared to others.
        258.
        2016.10 서비스 종료(열람 제한)
        Background : Plants live in restricted spaces that are constantly exposed to various environmental stresses. Under these stressful conditions, plants lead to biosynthesize specialized metabolites to adapt to environmental stresses. Here we investigate the effects of cold on the metabolome of tartaty buckwheat, focusing the flavonoid biosynthetic pathway. Methods and Results : From the metabolic profiling based on the GC-TOF-MS analysis, we identified the effect of cold on forty-four metabolites, including sugars, amino acids, and organic acids. Most of sugars and sugar derivatives remain nearly unchanged or slightly decreased in the plants grown at 25 ºC, whereas sugar and sugar derivative contents of cold-treated plants significantly increased, excepting galactose. Some of amino acid and amino acid derivatives contents decrease in cold-treated plants, whereas organic acid derived from tricarboxylic acid (TCA) cycle were increased the cold-treated plants compared with the plants grown at 25 ºC. Particularly, the contents of two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were significantly increased by cold treatment. Proanthocyanidins such as epicatechin and catechin were also significantly affected by cold. The expression of most flavonoid biosynthetic genes were significantly upregulated in cold-treated buckwheat seedling. Among the flavonoid biosynthetic genes, the expression of FtANS was notably upregulated in response to cold. Conclusion : By analyzing both primary metabolites and secondary metabolites of tartary buchwheat without or with cold, we showed that cold play a critical role in the modulation of the primary metabolites and flavonoid synthesis pathway in tartary buchwheat. Particularly, anthocyanin and proanthocyanidin biosynthetic pathways are strongly up-regulated in response to cold.
        259.
        2016.10 서비스 종료(열람 제한)
        Background : Despite the presence of various bioactive compounds in ginseng, there is lack of study about the phenolic metabolites in ginseng especially depending on the cultivation soil and the fertilizer types. Therefore, this study aims to develop an (-)ESI-LC-MS/MS analytical method for the measurement of selected phenolic compounds in the ginseng root. Methods and Results : Total phenol content in ginseng root was measured with the Folin-Ciocalteau method using UV/Vis spectrophotometer. Then, the 56 selected phenolic metabolites in ginseng root were measured with the (-)ESI-LC-MS/MS. The brief LC-MS/MS analytical conditions were as follows; Thermo Scientific Syncronis C18 HPLC Column (250 × 4.6 mm, 5 μm) was used. Optimized instrument settings were as follows: Curtain gas 20 psi, collision gas 2 psi, ion spray voltage –4500 V, nebulizer gas 40 psi, heating gas 70 psi, and its temperature 350℃. Total phenol content was higher in the ginseng cultivated in the paddy-converted field than that in upland. In particular, the total phenol content was about 6% decreased in the ginseng root cultivated with the food waste fertilizer compared to the control (p < 0.05). Six phenolic constituents including caffeic, chlorogenic, p-coumaric, ferulic, gentisic, and salicylic acids were found in the ginseng root by using the LC-MS/MS in MRM (multiple reaction monitoring) Mode. These six phenolic compounds occupied approximately 20% of the total phenol content measured in the corresponding ginseng root. The chlorogenic acid was the most abundant phenolic metabolite found in the ginseng root, accounting for ≥ 95% of the sum of six phenolic compounds, in this study. Conclusion : This preliminary study can be useful for the study on content and composition of phenolic metabolites in ginseng root with the aspect of metabolomics. We plan to further optimize the LC-MS/MS analytical method and then provide the extended understanding on the phenolic metabolism in the ginseng root with respect to the ginseng cultivation conditions.
        260.
        2016.05 서비스 종료(열람 제한)
        Background : The magnolia bark has been focused on owing to its worldwide usage for various clinical disorders. Despite its extensive use, only a few studies regarding the underlying mechanism of possible interactions of magnolia plant's components with medicines have been reported. In this study, incubation experiments with pooled human liver microsome (HLM) were performed to elucidate the mechanism of the effects of honokiol, a major ingredient of Magnolia officinalis, on human cytochrome P450 (CYP) isoenzymes. Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, human liver microsome and cofactors. Honokiol demonstrated potent inhibitory effects on CYP1A2, CYP2C9, CYP2C19 and CYP2D6 with IC50 values of 3.73, 4.91, 3.71 and 20.27 μM respectively. For the estimation of inhibition constant (Ki) value and mode of inhibition, incubation studies with various concentrations of each CYP isoenzyme specific probe were performed. Honokiol inhibited CYP1A2, CYP2C9 and CYP2C19 with a competitive mode, indicating Ki values of 1.62, 4.73 and 2.19 μM respectively. In contrast, the inhibition of CYP2D6 by Honokiol was explained by a uncompetitive inhibition mode with Ki value of 14.34 μM. Conclusions : These findings suggest that Honokiol could have inhibitory effects on metabolic activity mediated by CYP1A2, CYP2C9, CYP2C19 and CYP2D6 in humans.