The study will design the structural optimization of 30W LED heat sink using the thermal conductive plastic materials. The advantages of thermal conductive plastic heat sink are having formability and being able to lighten products. A heat sink was optimized in terms of the number, and the thickness of fins and the base thickness of the heat sink, using the Heatsinkdesigner software. Also by using SolidWorks Flow simulation and thermal analysis software, the thermal characteristics of the heat sink were analyzed. As the result, the optimized heat sink has 22 fins, which are 1.5mm thick and a 3.8mm-thick base. The weight of the heat sink was 310g, and the highest and the lowest temperature were 64.93℃ and 45.96℃ respectively. Because of the low thermal conductivity of the thermal conductive plastic, the highest and the lowest temperature of the thermal conductive plastic heat sink were 14.3℃ higher and 2.19℃ lower respectively than an aluminum heat sink
Abstract The cascade refrigeration cycle system has been used mainly to obtain the ultra-low temperature. In this study, the effects of internal and outdoor temperatures at chamber on the heat capacity of fin-tube heat exchangers were examined. In addition, refrigerant line patterns as well as refrigerant type for cascade cycle were optimized. The results in this study show that the refrigerant line patterns have greater effect on the sensible capacity than the total capacity. Also, the condenser heat release rate for R717-R744 cycle varies the ratio of 46 % with outdoor temperature by comparing with that of 24% for R134a-R410a cycle.
본 논문에서는 애조인 설계민감도(DSA)를 사용하여 평형상태의 열전도문제에서 수치적으로 얻어진 위상 최적설계를 실험적으로 검증하였다. 애조인 변수법을 이용하면 해석에서 사용되었던 행렬시스템을 애조인 문제를 풀 때 그대로 활용가능하기 때문에 설계민감도를 얻는데 필요한 계산을 매우 효율적으로 수행할 수 있다. 위상 최적설계를 위해서 설계변수는 정규화된 재료밀도 함수로 정하였다. 목적함수는 구조물의 열 컴플라이언스이고 제한조건은 허용 가능한 재료량이다. 또한 열화상카메라를 활용하여 이러한 위상 최적설계로 얻어진 수치적 결과를 부피가 동일하도록 직관적으로 설계된 디자인과 비교하여 실험적으로 검증하였다. 위상 최적설계로 얻어진 결과를 실제로 제작하기 위해 간단한 수치기법을 통해 점 정보로 변환한 후 역설계 상용프로그램을 이용하여 CAD 모델링을 수행한다. 이를 바탕으로 위상 최적설계 결과를 CNC(Computerized Numerically Controlled machine tools) 선반으로 제작하였다.
이 논문에서는 케이블교량 설계기준의 설계하중조합에 대한 신뢰도분석을 수행하였다. 설계기준에서 정의한 하중계수와 저항계수를 적용하여 설계된 실제 케이블교량을 대상으로 주 부재별 통계특성과 설계지배 하중조합을 분석하였다. 신뢰도분석을 통하여 하중조합별로 설정된 목표신뢰도지수를 확보됨을 확인하였고, 교량의 중요도를 상향할 수 있는 저항수정계수의 적용성을 검토하였다. 설계변수들이 신뢰도지수에 미치는 민감도 분석을 통하여 케이블의 신뢰도에 중요한 영향을 주는 요소를 분석하였다. 이를 통하여 설계기준의 안전계수들을 적용한 설계를 통하여 케이블교량의 목표신뢰도지수를 확보할 수 있음을 확인하였다.
목 적: 기존의 콘택트렌즈 분석기에서 1매의 렌즈를 삭제하여 시스템을 간소화하고, 수차를 감소시켜 콘택트렌즈 표면의 선명한 상을 얻는 저가격 고성능의 광학계를 최적화 설계하였다. 방 법: 기존의 콘택트렌즈 분석기의 광학적 성능 분석과 최적화 설계에 사용한 파장은 프라운호퍼 C, d, F선(0.656 ㎛, 0.587 ㎛, 0.486 ㎛)이며 기준파장은 d선으로 하였다. Full field는 object height를 5 mm로 설정하였다. 참고모델의 광학적 성능 분석과 분석기의 최적화 설계에는 Zemax 14.2 설계 프로그램을 사용하였다. 결 과: 최적화 설계한 콘택트렌즈 분석기는 기존의 콘택트렌즈 분석기보다 Spot diagram RMS radius는 42.51% 성능이 향상되었다. 상질에 영향을 주는 구면수차는 96.96%, 비점수차는 68.39%, 종 방향 색수차는 39.29%, 횡 방향 색수차는 95.97% 향상되었고, 상면만곡과 왜곡수차는 각각 82.09%와 66.05%로 수차 성능이 향상되었다. 결 론: 기존의 콘택트렌즈 분석기보다 적은 수차와 적은 렌즈 매수를 갖는 새로운 광학계를 설계하였다. 설계한 콘택트렌즈 분석기는 저가격, 고성능의 성능 최적화가 이루어졌다고 볼 수 있다.
본 연구는 인공광 이용형 common ice plant 식물공장 설계를 위한 기초자료를 확보하고자 수행되었다. 인공광 이용형 식물공장에서 작물의 광합성을 위해 필요한 광도는 120~200μmol·m−2·s−1, 탄소 고정률은 0.84nmolCO2·cm−2·s−1 이었다. 1주의 점유 면적 0.0225m2(15×15cm), 광도 200μmol·m−2·s−1, 하루 1,000주 생산을 가정할 경우, 식재 주수는 25,000주, 563m2의 재배면적이 필요하며, 전체 광도는 140,625μmol·s−1가 필요하게 된다. 하루 전력 약 153.2kW 기준으로 약 2,785개의 55W 형광등이 필요하며, 1개월 전기요금은 246만원(농업용 전력(을))이 된다. 또한 조명 설비 비용 2,785만원, 설비 비용 8,356만원과 전체 생산 비용 10,027만원이 소요된다. 재배기간 25일(325일 생산), 상품화율 80%에 따른 1주 당 생산 비용은 인건비 포함하여 약 370원이 된다. 경비 총합, 감가 상각비와 연간 판매수입을 고려해볼 때, 1주당 판매 비 용은 970원 이상으로 판단되었다.
This study is to solve the public education’s dilemma between the standardized education to maximize learning efficiency and the personalized education to maximize learning effectiveness, using the paradox management process. The process is based on combining the TOC (Theory Of Constraints) and TRIZ (Russian Theory of Inventive Problem Solving), which is a creative way of thinking to draw the synergic effect by pursuing simultaneously the conflicting elements. Through this research, a new concept of learning method can be suggested on a public course. Further research should be performed to develop a learning guideline based on the students’ empirical study results.
According to a simple survey on the current status of the assembly line design, it was found that trial and error methods on the basis of experiences have been used mainly in domestic manufacturing industries, even though there exist a lot of excellent line balancing studies. It seems that more practical researches should be carried out to develop user-oriented line balancing tools especially for small and medium-sized enterprises. This study presents a design of the line balancing tool which can support the line balancing tasks of nonspecialists. The proposed design tool is composed of three major modules: pre-process, line balancing, and post-process. In particular, pre-process and post-process are newly proposed to increase its ease of use. We applied the proposed design to a test problem and test result showed that our practical method may contribute to enhance the efficiency of production operations management.
In der vorliegenden Arbeit wird versucht, das Berliner-Modell von Paul Heimann zu erläutern, um den Deutschunterricht von einem lernerzentrierten Gesichtpunkt aus aufzubauen und zu planen. Das Berliner-Modell möchte helfen, unter Berücksichtigung der je unterschiedlichen Bedingungen und Situationen zu sinnvollen Entscheidungen über das Warum, Wohin, Was und Wie in einer Gruppe zu kommen. Das Berliner Modell hebt sechs Struckturelemente hervor: Anthropogene und sozialkulturelle Voraussetzungen werden als reale Gegebenheiten bei der Unterrichtsplanung berücksichtigt. Sie beziehen sich auf vier Entscheidungsfaktoren Absicht, Gegenstände, Methode und Mittel. In diesem Artikel wird der Unterricht “Zimmer besuchen” mit den sechs Strukturelementen von dem Berliner-Modell je nach dem Lernprozess gelpant und analysiert. Bei der Unterrichtsvorbereitung muss der Stellwert entsprechendes Lernprozesses dem Lehrer klar werden
Currently, the harvest is achieved by manpower of laborer and recently, the bulk of laborers are almost old people and women. In addition, due to the inconveniences of using harvest baskets and the percentages of labor in harvesting are high, in this research the harvest basket is designed for using in harvest. The basket is designed by consideration of the physical condition, it is analyzed about the effects of the weight and strain on the harvest basket by using the structure analysis. As a result, underside of basket occurs largest deformation. And the back of basket occurs lower deformation than underside of basket.
In this study, the effect of upper die type on the load characteristics of lower die and the wasted material was studied numerically. The open and closed types of upper die were applied for each stage and the results are analyzed using a finite element analysis method. The half of x,y plane was analyzed due to the symmetrical shape in order to reduce the analysis time. The coefficient of friction was set to Soap_Cold conditions as refer to the analysis library. It was revealed that a lot of underfill portion was observed the open type in stage 4. As a result of the maximum and minimum values of the max principal stress, closed type case much receives compressive stress about 620MPa-2019MPa. In case of open type, The load was reduced in all direction at each stage
This paper is focused on an optimal design of two degree of freedom (2-DOF) dynamic vibration absorber (DVA) for the simply supported damped beam subject to a harmonic force excitation. In order to achieve this aim, we first show how to define the objective function of optimal design problem for 2-DOF DVA. Second, we apply the cyclic topology-based particle swarm optimization (PSO) to find the optimal design parameters of 2-DOF DVA. Finally, some numerical results are compared with those of conventional researches, which demonstrates a reliability of the proposed design method
In this paper, the 5 joint toggle link of an injection molding machine is optimized. A model considering toggle link kinematics, frictions at the pin joints, and stiffness is verified by a finite element analysis(FEA) and a measured result. The FEA was carried out by the commercial FEA software ANSYS and the clamping force was calculated by measuring the tie-bar deformation of the molding machine. The influence on the maximum clamping force and stroke ratio are analyzed for the length variations of links. Based on the mathematical model and design parameter, the clamping force, the stroke ratio, and the maximum stroke of moving plate are optimized by using the response surface method(RSM) for the length of the toggle link, where the lager-the-better, the norminal-is-best, and the smaller-the-better characteristics are applied for the clamping force, the stroke ratio, and the maximum stroke of moving plate.
Firefighters receive extreme stress and suffer from PTSD in disaster. But we have not been paid attention to them. The purpose of this study is to analyze the problems of previous PTSD education programs in fire academy and to present the practical educational programs for firefighters to use in the disaster field. In the empirical analysis of this practical educational programs(EFT program), this program is more effective than existing theory-focused education training program.
Recently, a concept of damped outrigger system has been proposed for tall buildings. Structural characteristics and design method of this system were not sufficiently investigated to date. In this study, control performance of damped outrigger system for building structures subjected to seismic excitations has been investigated. And optimal design method of damped outrigger system has been proposed using multi-objective genetic algorithm. To this end, a simplified numerical model of damped outrigger system has been developed. State-space equation formulation proposed in previous research was used to make a numerical model. Multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the outrigger damper. Based on numerical analyses, it has been shown that the damped outrigger system control dynamic responses of the tall buildings subjected to earthquake excitations in comparison with a traditional outrigger system.
Modern systems development becomes more and more complicated due to the need on the ever-increasing capability of the systems. In addition to the complexity issue, safety concern is also increasing since the malfunctions of the systems under development may result in the accidents in both the test and evaluation phase and the operation phase. Those accidents can cause disastrous damages if explosiveness gets involved therein such as in weapon systems development. The subject of this paper is on how to incorporate safety requirements in the design of safety-critical systems. As an approach, a useful system structure using the method of design structure matrix (DSM) is studied while reflecting the need on systems safety. Specifically, the effects of system components failure are analyzed and numerically modeled first. Also, the system components are identified and their interfaces are represented using a component DSM. Combining the results of the failure analysis and the component DSM leads to a modified DSM. By rearranging the resultant DSM, a modular structure is derived with safety requirements incorporated. As a case study, application of the approach is also discussed in the development of a military UAV plane.
PURPOSES: Safety consciousness can be the first factor to hinder the acceptance of design alternative, which moderates the applied design criteria in order to adapt the road to the natural terrain condition. METHODS : The method which enables to check the safety of design alternative by using design consistency concept is suggested. The method is based on the linked or interactive analysis between terrain and road alignment. Real design example is considered as a guide how to apply the method and the analysis result is discussed with the future research. RESULTS: Suggested method can be used for designers as a tool to review their design outputs can be safe as much as the original design. So, designers have the more objective judgement on their designs and have the confidence on their designs. CONCLUSIONS : The method is expected to be used as a tool to see the safety consciousness in an objective view, so any possible conflicts between designers and design-related personnels caused by the terrain-oriented design can be solved.
PURPOSES: Ambiguous decision on whether rural or urban area for road design can increase the construction cost and restrict the land use of surrounding area. However, administrative classification on rural and urban area is not directly related to road design because of this classification is not based on the engineering viewpoint, so method which can explain the road design context is required. METHODS: Method which enables to identify the area for road design is suggested based on the deceleration expected to be experienced by drivers who use the road section concerned. Deceleration rate corresponding to the area such as rural or urban suggested in Road Design Guideline is used as the criteria to identify the area by comparing this value with the estimated deceleration rate at the road section concerned. Speed profile method is utilized to derive the deceleration rate, and speed estimation way for reflecting both road geometry and intersection is suggested using stopping sight distance concept. RESULTS: The procedure of the method application is suggested, and the design example utilizing the method is provided. CONCLUSIONS : The method is expected to be used to identify the area for road design with engineering viewpoint, and design consistency among the roads with similar driving environment can be made.
PURPOSES: This study is to conduct the research on the design principle for the driver's safety and comfort in installing consecutive curves of superhighway. METHODS: Superhighway does not currently exist in domestic area. Thus, this study is conducted by collecting driving behavior usage of 30 people who are involved in the members of the virtual driving simulation. By identifying the distribution characteristics of each scenario in ANOVA & Tukey Test, the distribution are categorized into three groups. RESULTS : In the case of Group A in Section 3 (R2 entry part), lane departure exceeds the safety standard, which means to be risky condition. And then in the case of Group B and C, the lane departure values applying theoretical formula was evenly distributed compared to the proven values. CONCLUSIONS : Based on the result, the continuous curve design principles at superhighway should follow three standards as follow. First, an additional linear part needs to be inserted between two curves. Second, what if inserting the linear part is difficult, it would be better to insert a curve more than 2,000m. Third, R1/R2 ratio should not be over two. This design primarily aims to the safety of the operator. Such road alignment also meets the expectations of drivers, thus, it may help drivers to be compatible and amenable while driving continuous curve in superhighway.
PURPOSES : This research describes how to predict the life cycles of fatigue cracking based on NCHRP Report 704 as well as modified harmony search (MHS) algorithm. METHODS : The fatigue cracking regression model of NCHRP Report 704 was used in order to calculate the ESAL (Equivalent Single Axle Load) numbers up to pavement failure, based on using material parameters, composite modulus, and surface pavement thickness. Furthermore, the MHS algorithm was implemented to find appropriate material parameters and other structural conditions given the number of ESALs, which is related to pavement service life. RESULTS: The case studies show that the material and structural parameters can be obtained, resulting in satisfying the failure endurance of asphalt concrete structure, given the number of ESALs. For example, the required ESALs such as one or two millions are targeted to satisfy the service performance of asphalt concrete pavements in this study. CONCLUSIONS : According to the case studies, It can be concluded that the MHS algorithm provides a good tool of optimization problems in terms of minimizing the difference between the required service cycles, which is a given value, and the calculated service cycles, which is obtained from the fatigue cracking regression model.