검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 275

        21.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.
        4,000원
        22.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.
        4,000원
        23.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill’s quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified returnmapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.
        4,000원
        24.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to establish an appropriate period of use of sawdust spawn at low temperatures and a nutrient supplement medium for cultivation of Lentinula edodes ‘Hwadam’. Of the nutrient supplements, the total yield of rice bran (5%) + corn flour (5%) treatments were 673.3 g, which was higher than rice bran (551.6 g) and wheat bran (546.7 g) treatments, respectively. As shown by the growth of Lentinula edodes ‘hwadam' during to the sawdust spawn storage period (at 4oC), the period of spawn running, browning, fruiting body formation, and development was 27 d, 81 d, 5 d, and 11-13 d, respectively, regardless of the length of the storage period at 4 oC. After 3 months of storage of sawdust spawn, the number of fruiting bodies and yield decreased as the storage period increased. Therefore, the period of use of sawdust spawn (at 4 oC) for the stable production of fruiting bodies of Lentinula edodes ‘Hwadam’ was a maximum of 3 months.
        4,000원
        25.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to reduce the phenomenon of the biased cultivation of certain mushroom varieties and to develop a competitive variety of Grifola frondosa. We developed the first Korean white commercial mushroom strain, ‘Bakyeon’, by crossing monokaryons derived from brown strains. We have collected and tested the characteristics of mushrooms from domestic and international genetic resources since 2018. We bred the unique domestic variety, ‘Bakyeon’, which has the following characteristics. The optimal temperature for mycelial growth was 25~28oC and the optimal temperature for fruit body growth was 16~18oC. The new variety was similar to the control variety (Daebak) in terms of the pileus, which formed a pine cone shape, and the number of days of cultivation. The yield was 94.1 g/bottle, which was 23% lower than the 108.5 g/bottle yield of the control variety. When incubating the parent and control varieties, the replacement line was clear. Moreover, polymerase chain reaction analysis of mycelial DNA resulted in different band patterns between the parent and control varieties, confirming the hybrid species.
        4,000원
        27.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Background/Aim: The aim of this study was to compare clinical features of hypertriglyceridemia-induced acute pancreatitis (HTGAP) with those of biliary acute pancreatitis (BAP) and alcoholic acute pancreatitis (AAP), respectively. Methods: Medical records of patients with acute pancreatitis (AP) who were admitted to our institution from January 2014 to December 2018 were retrospectively reviewed. Disease severity and local complications were evaluated according to the 2012 Revised Atlanta Classification. Systemic complications were evaluated according to the Modified Marshall Scoring System. Results: Of the total 610 patients with AP, those with BAP, AAP, and HTGAP were 310 (50.8%), 144 (23.6%), and 17 (2.8%), respectively. Compared with BAP, HTGAP showed higher proportion of moderately severe acute pancreatitis (MSAP) (64.7% vs. 28.1%, p<0.001) and severe acute pancreatitis (SAP) (17.6% vs. 5.5%, p <0.001). And HTGAP showed more local complications (76.5% vs. 26.8%, p<0.001) and higher recurrence rate (52.9% vs. 6.5%, p <0.001), but there was no significant difference in systemic complications (23.5% vs. 11.6%, p =0.140). Contrarily, there was no significant difference between HTGAP and AAP with respect to disease severity (64.7% vs. 63.9% in MSAP and 17.6% vs. 6.9% in SAP, p =0.181), local complications (76.5% vs. 67.4%, p =0.445), recurrence rate (52.9% vs. 32.6%, p =0.096), and systemic complications (23.5% vs. 11.5%, p =0.233). Conclusions: HTGAP showed higher disease severity, more local complications, and higher recurrence rate than BAP. However, there was no significant difference in clinical features between HTGAP and BAP.
        4,000원
        29.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.
        4,000원
        30.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we have prepared a Ti-6Al-4V/V/17-4 PH composite structure via a direct energy deposition process, and analyzed the interfaces using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The joint interfaces comprise two zones, one being a mixed zone in which V and 17-4PH are partially mixed and another being a fusion zone in the 17-4PH region which consists of Fe+FeV. It is observed that the power of the laser used in the deposition process affects the thickness of the mixed zone. When a 210 W laser is used, the thickness of the mixed zone is wider than that obtained using a 150 W laser, and the interface resembles a serrated shape. Moreover, irrespective of the laser power used, the expected  phase is found to be absent in the V/17-4 PH stainless steel joint; however, many VN precipitates are observed.
        4,000원
        31.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.
        4,000원
        32.
        2022.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 oC (60 oCmin) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.
        4,000원
        33.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.
        4,000원
        34.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900oC, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.
        4,000원
        35.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, algorithms for analyzing the torsion of buildings under earthquake excitation are developed. The algorithm and formulations to account for the torsional angle are verified by analyzing the seismic acceleration time history data. The method was applied to the reference buildings to examine their operation and usability. The reference application demonstrated that the noise-canceling scheme successfully overcame various obstacles in the field measurements. The developed method is expected to be used as a tool to support a loss assessment system for determining the direction and priority of disaster response in the event of an earthquake.
        4,000원
        40.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        원형질체 융합 기술은 종·속간 유전적 한계를 넘어 육종과 그 소재로 활용하고데 목적이 있다. 본 연구에서는 ‘흑타리’(P. ostreatus)와 ‘호산’(P. pulmonarius)의 단핵균사를 이용하여 원형질체를 나출하고 나출된 원형질체를 융합하여 종간 교배 계통을 육성하였다. 육성계통의 균사생장속도는 ‘호산’, ‘흑타리’, PF160313, PF160306 계통 순으로 빠른 편이었다. 균사 밀도는 PF160306 계통이 가장 높았고, 나머지는 중간 수준의 밀도를 나타내었다. 원형질체 융합계통인 PF160306과 PF160313 계통은 ‘흑타리’ 품종 보다 배양 기간이 10일, ‘호산’ 품종보다 2일 단축되었다. 자실체 생장 기간은 ‘흑타리’와 ‘호산에 비하여 각각 3일, 1일 단축되었다. PF160306 계통의 생산량은 135.9 g/병으로 ‘호산’에 비하여 높았으나 통계적으로 유의차가 없었다. 자실체 발생기간은 15˚C에서 9일, 25˚C에서 4.5일로 온도가 높아짐에 빨라졌다. 자실체의 갓색은 21 o C 노란색이 가장 선명하게 발현되었다. URP primer 7을 사용하여 PCR 밴드 패턴을 비교하였을 때, 전체적으로 ‘호산’ 품종과 유사하였다. DPPH radical 소거능과 폴리페놀 함량에 있어 ‘순정’은 각각 62.5%, 43.5 mg/mL였으며, PF160313 계통은 각각 65.7%, 49.9 mg/mL를 나타내어 계통간 유의차가 있었다. ACE 활성은 ‘순정’ 74%, PF160313 계통 75%로 유사한 수준이었다.
        4,000원
        1 2 3 4 5