In stable continental regions, selecting appropriate ground motions for seismic design and dynamic response analysis presents significant challenges. This study evaluates the liquefaction potential of the Nakdonggang delta region, South Korea, by generating synthetic ground motion scenarios and applying a scenario-based liquefaction assessment approach. We utilized a hybrid broadband ground motion simulation method proposed by Graves and Pitarka (2010, 2015) to create bedrock ground motions for three hypothetical earthquakes (Mw 6.2 and 6.0) occurring along the Dongrae and Miryang faults. The generated synthetic ground motions were used as input for onedimensional nonlinear site response analyses, incorporating shear wave velocity profiles derived from surface wave inversion. The simulated ground motions demonstrated higher responses at short periods and relatively weaker responses at long periods compared to the Korean design spectra. This amplification of long-period components was attributed to the dynamic response of deep sedimentary layers, while high-frequency components were generally deamplified due to damping effects in shallow silty layers. Liquefaction susceptibility was assessed using surface ground motions derived from the site response analyses, following the SPT-based simplified method proposed by Idriss and Boulanger (2008). Results indicated high liquefaction potential across most sites for the Dongrae earthquake scenario, while liquefaction was unlikely for all sites under the Miryang-1 scenario. For the Miryang-2 scenario, liquefaction was predicted at some sites. Overall, liquefaction is expected at PGA values of approximately 0.13 g or higher, with sites exhibiting lower shear wave velocities being more vulnerable to liquefaction
In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
This study aimed to develop a systematic process for identifying components that need to be changed to reduce the Head Injury Criterion (HIC) during pedestrian headform tests. Through simulation and analysis, it was confirmed that the hood, hinge, hinge plate, cowl, fender, and fender bracket significantly influence HIC15. The study identified the specific impact of each component on HIC15, allowing for targeted improvements. The proposed process demonstrated superior performance compared to single-component optimization, yielding more significant reductions in HIC15. Multiple vehicle models were tested, confirming the process's effectiveness in consistently lowering HIC15 values.
The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.
This study conducted an investigation into the effects of fruit type and cultivation practices (organic and conventional) on soil characteristics and soil arthropod communities within apple, blueberry, grape, peach, and pear orchards. The collection of soil arthropod communities was achieved through the utilization of pitfall traps, with concurrent measurements taken for soil moisture content, electrical conductivity, and temperature. The findings of this study unveiled substantial impacts attributed to fruit type and cultivation practices on soil characteristics. Specifically, within organic apple orchards, discernibly higher levels of soil moisture content, electrical conductivity, and temperature were observed when compared to their conventional counterparts. The investigation into soil arthropod communities yielded a total of 1,527 individuals, classified in to five phyla and 15 orders. The range of abundance, species richness, and diversity indices varied across conventional and organic orchards. Cultivation practices were found not to exert a significant influence on soil arthropod community characteristics. However, Non-metric Multidimensional Scaling (NMDS) analysis indicated a significant differentiation in soil arthropod community structure based on cultivation practices. This study underscores the importance of considering vegetation structure and environmental characteristics that may influence soil arthropod communities comprehensively when assessing the impact of cultivation practices on soil arthropods. Furthermore, it emphasizes the need to account for both the characteristics and structure of soil arthropod communities in understanding the implications of cultivation practices on these organisms.
PURPOSES : The purpose of this study is to derive dropout rates according to various international roughness index (IRI) specifications using ProVAL, develop a comparative methodology, and indirectly assess the level of road management in each country. METHODS : Based on a literature review, the IRI specifications for each country were collected, and the ProVAL analysis tool was used to compare and analyze dropout rates according to each specification. Thus, the dropout rate rankings for each country were calculated. Additionally, by analyzing the correlation between dropout rates according to each threshold, a model was created to convert the threshold between the most commonly used baseline distances of 100 m and 161 m. RESULTS : Dropout rates were derived according to the standards of each country and rankings were assigned. Comparing 51 standards, the IRI level of New Mexico appeared to be the highest, whereas the domestic specifications ranked 36th. A model was created to convert the threshold between the standard distances of 100 m and 161 m. CONCLUSIONS : This study objectively assessed the roughness standards in various countries using the dropout rate and IRI ranking specifications. The highest specification was found for the asphalt of New Mexico in the USA, with the domestic specification ranking 36th. A model that converts the thresholds between the most commonly used baseline distances of 100 m and 161 m was developed, with slight differences across sections. For a precise conversion, individual models may be required for each section.
This study was conducted to provide basic data on the antioxidant activity, inhibition of adipocyte differentiation and reactive oxygen species (ROS) production of a mixture of Brassica juncea extract (BJE) and fermented black rice fraction (BRF). We investigated the total phenol content, total flavonoid content, antioxidant effects (DPPH radical scavenging, ABTS radical scavenging, reducing power, FRAP and ORAC assay) and anti-obesity activity of the mixture in 3T3-L1 cells. Our results showed that the total phenol and flavonoid content increased with increasing BRF mixture ratio. The antioxidant activity increased as the BRF mixture ratio increased. In addition, BJE and BRF mixtures did not show any cytotoxicity during the 3T3-L1 differentiation period. During adipocyte differentiation, BJE and BRF mixtures significantly inhibited lipid accumulation and ROS production compared to the control group. These results warrant further experiments to develop an anti-obesity functional food using a mixture of BJE and BRF.
Cellular myxoma is an uncommon type of myxoid benign tumor, predominantly occurring in adult female patients aged >40 years. This report aims to document a case of cellular myxoma that occurred in the buccal mucosa. Compared to intramuscular myxomas, cellular myxoma demonstrates hypercellularity and vascularity. Its manifestation in the soft tissue of the head and neck area is exceptionally rare. Generally, cellular myxoma manifests as a firm and immovable mass covered with normal oral mucosa, with no associated clinical symptoms. Homogenous low signal intensity on T1-weighted scans and high-signal intensity on T2-weighted magnetic resonance scans reveal cellular myxoma, as most lesions show well-defined margins and heterogeneous contrast enhancement. The significant histologic features include a focal or diffuse increase in cellularity with fibroblast-like cells and vascularity with an abundant collagenous matrix. Our presented case reflects these facts examinations, based on which a final diagnosis of cellular myxoma was made. Immunohistochemistry revealed locally and diffusely positive SMA and CD34. The clinical tendency of cellular myxoma with hypercellularity may affect the production of myxoid and collagenous substrates, and if complete resection is not performed, the possibility of local recurrence in the primarily affected region remains. Hence, complete surgical excision was performed under general anesthesia, and follow-up until a year after treatment revealed no observed recurrence. To achieve precise diagnosis and complete treatment without local recurrence, several diagnostic examinations should be considered.
Small ponds, which exhibit unstable succession pattern of plankton community, are less well studied than large lakes. Recently, the importance of small ponds for local biodiversity conservation has highlighted the necessity of understanding the dynamics of biological community. In the present study, we collected zooplankton from three small reservoirs with monthly basis and analyzed their seasonal dynamics. To understand the complicated zooplankton community dynamics of small reservoirs, we categorized zooplankton species into four groups (LALF Group, Low Abundance Low Frequency; LAHF Group, Low Abundance High Frequency; HALF Group, High Abundance Low Frequency; HAHF Group, High Abundance High Frequency) based on their occurrence pattern (abundance and frequency). We compared the seasonal pattern of each group, and estimated community diversity based on temporal beta diversity contribution of each group. The result revealed that there is a relationship between groups with the same abundance but different occurrence frequencies, and copepod nauplii are common important component for both abundance and frequency. On the other hand, species included with LALF Group throughout the study period are key in terms of monthly succession and diversity. LALF Group includes Anuraeopsis fissa, Hexarthra mira and Lecane luna. However, groups containing species that only occur at certain times of the year and dominate the waterbody, HALF Group, hindered to temporal diversity. The results of this study suggest that the species-specific occurrence pattern is one key trait of species determining its contribution to total annual biodiversity of given community.
Vulnerable populations in healthcare facilities are more sensitive to exposure to indoor air pollutants, and therefore are more affected by such pollutants than the general population. This was the underlying reason why studies of indoor air pollutant concentration distribution and health risk assessment have been conducted targeting facilities, such as daycare centers, medical facilities, elderly care facilities, and postnatal care centers. However, previous studies have mainly focused on daycare and medical facilities for their research, and relatively speaking, studies conducted on the other venues are lacking. Therefore, this study aims to present the current status of indoor air quality and perform a health risk assessment in regard to Formaldehyde exposure at postnatal care centers and elderly care facilities. Here, the study focused on facilities that had undergone pollution level inspections from January 2017 to December 2021. A total of 81 postnatal care centers and 48 elderly care facilities were selected as the subject of the study. Then, the study utilized concentrations of five elements (CO2, HCHO, PM10, PM2.5, TBC) to determine the status of indoor air quality of both postnatal care centers and elderly care facilities. For health risk assessment, HCHO concentration was used. The investigation demonstrated that the yearly average concentration of the five elements stood within the indoor air quality maintenance standards, and the ratio of PM2.5 to PM10 in the two types of facilities was distributed as high as about 70%. In addition, the study showed that HCHO and TBC demonstrated a positive correlation when the relationship between indoor temperature and humidity with the five elements was examined. The health risk assessment showed that the cancer risk level of postnatal care center users stood below 10-6, below the level that is perceived as an acceptable risk. The cancer risk of workers from both postnatal care centers and elderly care facilities and elderly care facility users exceeded the acceptable risk level of 10-6, but was shown to be below 10-4, the maximum acceptable risk.
저서동물은 저서환경특성을 나타내는 중요한 지시자로 알려져 있다. 본 연구에서는 무안만 조 하대의 환경 및 저서동물의 분포특성을 조사하였으며, 수질평가지수(WQI)와 저서생물지수 (AMBI)를 이용하여 저서생태계 건강성을 평가하였다. 현장채집은 2019년 하계 무안만 조하대 의 10개 정점에서 이루어졌다. 무안만 조하대는 상부지역이 하부지역에 비해 세립한 입도특성 을 나타내고 있었으며, 높은 유기물 함량을 보였다. 일부 정점에서 오염지표종인 Musculista senhousia, Theora fragilis and Lumbrineris longifolia과 같은 종들도 우점을 나타내고 있었다. 군집분석결과 무안만 조하대는 상부, 중부, 하부 그룹으로 구분되었으며, 유기물 함량과 저서 건강성 평가지수(WQI 및 AMBI)와의 상관결과와 일치하였다. 본 연구결과, 무안만 조하대의 저서생태계는 양호한 것으로 평가되었다. 하지만 저서동물이 균등하게 분포하지 않고, 기회 종이 출현하고 있어 조하대의 유기물 부하량이 증가하고 있는 것으로 보인다.