Spirodela polyrhiza (L.) has been known as greater duckweed or great duckmeat. It is native inhabited in Korea. It is considered as a rich source of primary metabolites including protein, carbohydrates, and fats. Thus, it is considered as an alternative food source for the future. In addition, it has a strong phytoremediation capacity to remove various environmental pollutants, especially inorganic elements and pesticides. With a variety of duckweed’s application, there is an urgent need to develop a cultivation method for a sustainable supply of S. polyrhiza. In this study, an indoor vertical farm has been introduced to optimize duckweed cultivation. Indoor cultivated S. polyrhiza showed about 2-fold higher fresh weight than outdoor cultivated duckweed. Contents of inorganic elements were also significantly reduced in indoor cultivated S. polyrhiza. Especially, lead (Pb), cadmium (Cd), and arsenic (As) were approximately 10-fold decreased in indoor cultivated duckweed. On the other hand, contents of proteins and fats were significantly increased in indoor cultivated S. polyrhiza, while carbohydrates were found more in outdoor cultivated S. polyrhiza. Increasing N content in a homemade nutrition solution also enhanced fresh and dried weights of S. polyrhiza by about 1.8-fold in comparison with other commercial nutrition solutions. Proliferation rate (%) was doubled every 24 hours in this indoor vertical farm, indicating the accomplishment of a sustainable supply for S. polyrhiza. Further studies need to be undertaken to cultivate other duckweeds such as Wolffia arrhiza and Lemna minor using the same indoor farming system.
Vertical takeoff and landing (VTOL) drones are increasingly recognized as an important solution for last-mile delivery in the food and beverage sector, owing to their rapid deployment capabilities and high operational flexibility. In particular, growing interest in drone delivery services has been observed among fast food and coffee franchises, where rapid delivery is essential due to the time-sensitive nature of food and beverage items intended for immediate consumption. Despite this trend, there remains a lack of research on the structural modeling of flight routes for VTOL drones operating under automatic flight conditions, and on the implementation of first-come-first-served (FCFS) delivery services utilizing predefined flight routes. Accordingly, this study comprehensively describes the operations for food and beverage delivery services using VTOL drones. In particular, it addressed the use of multiple drones to conduct FCFS-type multi-point delivery services along fixed routes suitable for automatic flight.
Stemflow (SF) is essential for water resources within forest ecosystems and can constitute up to half of the gross rainfall (GR), depending on the forest stand structures in coniferous plantations. Although numerous studies on SF yield have been reported globally for various forest types, very few studies on SF have been reported to examine the influence of forest stand structures on SF in Korea. This study aimed to quantify the relationship between SF and forest stand structures in unmanaged Japanese cypress plantations. Two study plots were established (10 m × 10 m each) in plantations with the same stem density (SD: 2500 stems ha-1) (hereafter P1 and P2). Almost all forest stand structures (canopy projection area, tree height, diameter at breast height (DBH), number of live and dead branches, and ratio of canopy length to canopy width), including canopy volume using mobile LiDAR devices, were investigated. To evaluate the efficiency of funneling rainwater for the effect of tree biomass on SF, a funneling ratio (FR) was used. The present SF ratios (20.7% in P1 and 22.3% in P2) were much higher than those reported in previous studies of various forest types in Korea (SF ratios: 0.2–5.8% with a mean of 2.0%). This is due to the interaction between the high SD and many under-canopy dead branches. Individual-scale FR was correlated with DBH (R2 = 0.43). The present stand-scale FRs (FRstand) (22.3 in P1 and 29.2 in P2) were much higher than those reported in the previous studies (FRstand: 1.0–33.3 with a mean of 7.8) because of the negative relationship between FRstand and mean DBH (R2 = 0.78, p = 0.02). Our results provide useful information for understanding changes in SF caused by forest stand structures.