자생식물은 관상용, 약용, 식량자원으로 활용될 수 있는 잠재력을 지닌 고유 유전자원이다. 돌부추(Allium koreanum H.J. Choi & B.U. Oh)는 우리나라 해안 암반지대에 분포하는 자생식물 중 하나로, 기후변화와 서식지 감 소로 인해 보전 가치가 높은 식물이다. 이번 연구는 온도와 과산화수소가 돌부추의 발아에 미치는 영향을 조사하기 위해 수행되었다. 종자를 무처리(대조군) 또는 1% 과산화수소(H2O2)로 90분간 처리한 종자를 준비해 15, 20, 25°C 로 설정된 식물 생장 챔버에 배치하였다. 그 결과, 파종 23일 후 15°C에서 42%인 발아율이 20°C와 25°C에서 각각 18%와 0%인 발아율보다 2배 이상 높았으며, H2O2 처리 여부와 관계없이 15°C에서 발아율이 42%로 가장 높았다. H2O2 처리와 관계없이 최종 발아율 50%(T50)에 도달하는 일수는 20°C에서 가장 짧았지만, 일평균 발아율(MDG)은 15°C에서 가장 높았다. 따라서 1%의 H2O2 처리는 돌부추의 발아율에 큰 영향을 미치지 않았으며, 15°C의 온도가 돌부추의 발아율을 높이는 데 최적인 것으로 판단된다. 본 연구 결과는 돌부추의 발아를 위한 기초 연구 자료로 활 용될 수 있을 것으로 기대된다.
Buckwheat (Fagopyrum esculentum), which is a traditional Korean crop, has been known as a health food due to its rich nutrition. This study was conducted to evaluate the change in flavonoid content of flowers and seeds during post-flowering growth of Korean tartary buckwheat variety ‘Hwanggeummiso’, with the aim of providing basic data for the development of functional food and feed additive. Tartary buckwheat took 69 and 99 days from the sowing date to reach the flowering and maturity stages, respectively. As a result of examining the flavonoid components of each part of tartary buckwheat, chlorogenic acid, rutin, and isoquercitrin of flowers increased from the flowering period on 22 May (0 days after flowering) to 42 days after flowering, while quercetin increased until 21 days after flowering and then decreased thereafter. In seeds, chlorogenic acid, rutin, and isoquercitrin were most abundant at the time of seed-bearing on 14 days after flowering, and showed a decreasing tendency thereafter. On the other hand, quercetin showed a tendency to increase until 21 days after flowering and then decrease. Overall, the flavonoid content was higher in flowers than in seeds, with rutin being particularly prominent. Based on this, the possibility as food materials and feed additives was confirmed using buckwheat produced in Korea.
A facile and efficient method was developed to prepare highly stretchable and conductive graphene conductors with wrinkled structures by the mechanical stretching and shrinking of elastomeric substrates, in which graphene inks were printed on a prestretched elastomeric substrate. Stretchable and exfoliated graphene inks were prepared by mixing graphite and Ecoflex in a shear-assisted fluid dynamics reactor. The resultant graphene conductor exhibited excellent stretchability at 150% strain and high electrical conductivity of 64 ± 1.2 S m− 1. The resistance of the conductor did not change in bent, twisted, and stretched states. The resistance did not change during 10,000 cycles of stretching/releasing, with a maximum strain of 150%. Based on the graphene conductor, a stretchable conductometric sensor with a two-electrode configuration was fabricated to measure impedance changes at different concentrations of electrolyte ions. This sensor exhibited a good and linear sensitivity curve (298.61 Ω mM− 1, R2 = 0.999) in bent and stretched states.
The present study investigated effects of antifungal and carboxylesterase inoculant on rumen fermentation with different rumen pH. Corn silage was treated without inoculant (CON) and with a mixed Lactobacillus brevis 5M2 and L. buchneri 6M1 (MIX). Rumen fluid was collected from two cannulated Hanwoo heifers before morning feeding (high rumen pH at 6.70) and 3 h after feeding (low rumen pH at 6.20). Dried corn silage was incubated in the rumen buffer (rumen fluid + anaerobic culture medium at 1:2 ratio) for 48 h at 39oC. Eight replications for each treatment were used along with two blanks. Both in a high and a low rumen pH, MIX silages presented higher (p<0.05) the immediately degradable fraction, the potentially degradable fraction, total degradable fraction, and total volatile fatty acid (VFA) than those of CON silages. Incubated corn silages in a low rumen pH presented lower (p<0.05) total degradable fraction, ammonia-N, total VFA (p=0.061), and other VFA profiles except acetate and propionate, than those in a high rumen pH. The present study concluded that application of antifungal and carboxylesterase inoculant on corn silage could improve degradation kinetics and fermentation indices in the rumen with high and low pH conditions.
최근 지구온난화로 인한 기후변화는 육상 및 해양 생태계에 다양한 영향을 미치고 있다. 농업생태계 역시 이들 생태계에 의존하고 있는 생물 및 인간에게 생물학적, 경제학적, 사회학적으로 다양한 영향을 주고 있다. 기후변화를 쉽게 감지할 수 있는 지표종은 기후변화에 비교적 민감하게 반응을 나타내기 때문에 농업생태계와 같은 경제 사회적 영향을 많이 받는 곳에서 다양하게 활용될 수 있다. 2017년 농업과학원에서는 농업생태계에서 기후변화에 따른 영향을 잘 나타낼 수 있는 식물과 무척처동물 30종을 지표종으로 선정하였다. 30종 중 나비목에 속하는 종으로는 배추흰나비(Pieris rapae), 남방노랑나비(Eurema mandarina), 노랑나비(Colias erate), 호랑나비(Papilio xuthus) 4종이다. 이 연구는 나비 지표종 중 농업생태계에서 가장 풍부하고 확인이 쉬운 배추흰나비를 대상으로 전남, 충북, 경기, 강원지역에서 4월부터 월 1-2회 모니터링을 실시하여 생물계절의 차이를 알아보았다. 조사는 각 지역에서 논과 밭, 산림 등을 포함하는 경로를 선정하여 30분간 이동하면서 좌우 5m내외 출현하는 나비를 조사하는 선 조사법을 실시하였다. 4월 이후부터 조사한 결과 전남에서는 4월초인 14째 주에 이미 많은 수가 관찰된 반면 충북, 경기 등지에선 15째 주 이후 관찰되기 시작하였다. 강원도에서는 6월 중순인 24째부터 관찰되어 위도별 출현 양상의 차이를 나타내었다. 9월말까지 관찰된 생활사 수는 전남에서는 5회, 경기도에서는 4-5회, 충북에서는 4회, 강원에서는 2회로 지역별 차이를 나타내었다. 이러한 결과는 농업생태계에서 흔히 볼 수 있는 배추흰나비가 위도별로 출현시기와 출현횟수를 달리하면서 나타나는 것을 통해 기후변화를 나타낼 수 있는 지표종으로 적절하다고 여겨지며 앞으로도 전국적으로 지속적인 모니터링을 통해 정밀한 출현양상과 미래 분포 변화 모델링 작업에 효과적으로 이용될 수 있는 기초자료를 제공할 수 있을 것으로 여겨진다.
섬은 비록 물에 둘러싸여 고립되어 있지만 서식지 유형이 바닷가부터 산림까지 다양하고 각 서식지마다 다양한 동ㆍ식물이 분포한다. 섬 생물지리학에서 동적평형설(dynamic equilibrium theory)은 섬에 서식하는 생물 종 수가 섬 면적과 육지와의 거리에 따라 결정된다는 이론이다. 대한민국은 3,358개의 섬을 가지고 있는데 이 수는 세계에서 4번째로 많다. 초식성 곤충은 전체 생물종의 1/4을 이루며, 식물을 먹이원으로 하기 때문에 식물과 밀접한 관련이 있다. 따라서 이 연구는 다양한 초식성 곤충의 활동을 알 수 있는 잎의 식흔을 이용하여 섬 생물지리학 이론을 확인하고자 하였다. 2017년 6월, 2018년 6~7월에 다도해해상국립공원에 속해 있는 15개 섬에서 식흔을 알아보았으며 대상 식물은 4개 과(대극과, 자작나무과, 장미과, 참나무과)에 속하는 낙엽활엽수이었다. 조사결과 Chewer와 Miner에 의한 식흔은 섬 면적이 클수록 Chewer에 의한 식흔량의 평균값과 Miner에 의한 mine의 수가 증가하는 경향을 보였다. 하지만 육지와의 거리가 멀수록 Chewer에 의한 식흔량의 평균값과 mine의 수는 감소하는 경향을 보였다. Galler에 의한 식흔은 섬 면적이 클수록 gall의 수는 감소하는 경향을 보였고, 육지와의 거리가 멀수록 증가하는 경향을 보였다. 이 결과를 통해, Chewer와 Miner에 의한 식흔은 섬 생물지리학 이론에 일치하는 양상을 보였지만, galler에 의한 초식활동은 이론에서 예측한 결과와는 맞지 않았다. 이 연구를 통하여 일부 초식곤충의 활동이 섬 면적이나 육지와의 거리에 영향을 받는 것을 알 수 있었으나 galler와 같은 초식곤충은 일반적인 경향을 따르지 않았으며 이러한 원인에 대한 정밀 연구가 필요할 것으로 생각한다.
우리나라는 약 4,000여개의 크고 작은 섬들로 이루어져 있고, 그 속에는 다양한 생물종들이 주변 환경과 상호작용하 며 서식하고 있다. 그 중 초식성 곤충은 생물 구성의 1/4로 많은 비율을 차지하며, 생산자인 식물을 먹고 2차 소비자의 먹이원이 됨으로써 생태계의 중간 고리 역할을 한다. 본 연구는 다도해해상국립공원에 속해 있는 크기가 다른 6개의 섬에서 초식성 곤충의 영향을 알 수 있는 식흔과 여기에 영향을 줄 수 있는 환경요인(섬 면적, 육지와의 거리, 해안선 길이, 최고고도)과의 관계를 알아보았다. 식흔을 알아보기 위해 낙엽활엽수인 4개의 수종(참나무속, 벚나무속, 예덕나무속, 오리나무속)을 선정하여 2017년 6월과 9월에 관찰하였다. 이와 함께 초식성 곤충 중 종 다양성이 풍부한 나방을 채집하여 식흔자료와 비교하였다. 조사결과 섬 면적이 커질수록, 해안선의 길이가 길수록, 최고고도가 높을수록 식흔량이 증가하는 경향을 보였고, 나방의 종수도 증가하였다. 반면 육지와의 거리가 멀수록 식흔량이 감소하는 경향을 보였고, 나방 종수도 감소하였다. 이러한 결과를 통해 초식성 곤충의 다양성과 환경요인이 관련 있는 것을 확인할 수 있었다
The diamondback moth, Plutella xylostella is one of the world’s major pests. Economic cost to control this pest wasestimated between US$1.3 billion and US$2.3 billion based on management costs. Conservative estimate included yieldloss caused by 5% diamondback moth was estimated US$4 billion-US$5 billion. P. xylostella was managed by chemicalinsecticide such as organophosphates, carbamates and pyrethroids. But insecticide resistance which is caused by repeatedapplication makes it difficult to control this pest. For environmental friendly control of diamondback moth, entomopathogenicfungi could be used as alternative. We conducted bioassay to select high virulent isolate to larva of diamondback mothwith forty six entomopathogenic fungi which were isolated from soil samples by insect-bait method. As a result of bioassaytwelve isolates was selected as candidate. We investigated control efficacy of these twelve isolates with potted Chinesecabbage at laboratory and greenhouse.
Entomopathogenic fungi have been used to control pest as alternative to chemical pesticide. To kill the pest entomopathogenicfungi penetrate cuticle of pest, reach the hemocoel and utilize nutrient of host pest. Finally fungi kill the host by consumingthe host nutrient and physically damaging the tissues. But these process of fungi to control pest is needed so much timeand this point is a disadvantage for fungi. Therefore we studied other application method of fungi to control pest. Weconducted behavior test of beet armyworm to Isaria fumosoroseus which is high virulent against beet armyworm. Adultof the beet armyworm avoided oviposition at Chinese cabbage treated with I. fumosoroseus compare to control and otherhigh pathogenic isolate, Metarhizium anisopliae and this repellency of I. fumosoroseus lasted for 5days in greenhouse.Behavior of larvae to I. fumosoroseus also investigated with choice and non-choice test. Third to fifth instar larvae detectedand avoided fungi. Repellent behavior of larvae to fungi was more noticeable in younger larvae. This result may be usedto prevent the infestation of moth in crop production.
Entomopathogenic fungi have been used as important part of integrated pest management program to control aphid. In particular, Beauveria bassiana was distributed throughout the world including temperate and tropical area, various habitats from alpine soil, desert soil to running water and both insect and plant. Especially the fungus has also been isolated from the surface and the interior of plants and act as natural control agent. Viability of fungi on the plant surface may be influenced by temperature, humidity, sunlight and plant type as well as fungal isolate. Persistence of treated fungal control agent on phylloplane and control efficacy may differ from environmental conditions and isolates. In this study, we investigated the persistence of an B. bassiana which is developing as prototype wettable powder to control cotton aphid, and the residual efficacy of the prototype on cucumber under three different greenhouse conditions.
This study used both kinesiotaping and extracorporeal shock wave therapy on patients diagnosed with frozen shoulder - a common musculoskeletal disorder in adults - in order to observe the effects on the joint range of motion. 21 adult(male 12, female 9) were selected and distributed into randomized groups. One group received kinesiotaping (n=10) and the other group received kinesiotaping together with extracorporeal shockwave therapy (n=11). After a 6 week duration of receiving kinesiotaping and extracorporeal shockwave therapy, changes in the joint range of motion in the patients were observed. Post-treatment of frozen shoulder, the changes in abduction within the shoulder joint were as follows: in both groups there was a noticeable increase in the joint range of motion (p<.05). Post-treatment of frozen shoulder, the changes in external rotation within the shoulder joint were as follows: both groups showed a significant increase in the joint range of motion (p<.05). The result of suggest that, it can be inferred that both the extracorporeal shockwave therapy and kinesiotaping are effective in increasing the joint range of motion in patients with frozen shoulder.
Cotton aphid, Aphis gossypii Gloever is one of the major pests on a wide range of economically important crops in the world. The sustained use of chemical insecticides to control the aphid has led to the emergence of resistant strains to numerous used insecticides. As an alternative strategy entomopathogenic fungi have been used as part of integrated pest management program to control aphid, especially insecticide-resistance population. In particular, Beauveria bassiana-based commercial bio-insecticide has been used to reduce the pest population under greenhouse conditions in various countries. In this study, we investigated the control efficacy of a prototype of commercial mycopesticide using an B. bassiana (wettable powder) against cotton aphid on potted cucumber plant in greenhouse conditions.
Various arthropods have directly and indirectly threatened human life by transmitting human pathogens such as malaria and Zika virus as well as by damaging crops such as direct feeding and transmission of plant pathogens. According to WHO, vector-borne diseases account for over 17% of all infectious diseases and there are over 1 million deaths from the diseases such as malaria, dengue, etc., globally. About 13% of total crop production is destroyed by agricultural pests during crop production and storage. To control medical or agricultural pests chemical pesticides have been used, but recently because of concerns about environmental pollution and human health the demands for eco-friendly control method are increasing. Insect pathogens are good alternative candidates instead of chemicals. Over 50 entomopathogens including viruses, bacteria, fungi and nematodes are now commercially used as microbial pesticides. Entomopathogenic fungi have also been evaluated as control agents for a diverse insect pests such as aphid, moth, thrip, whitefly, mosquitoes, tick, etc. We will discuss a development of microbial pesticides using, especially, entomopathogenic fungi to control noxious arthropods to agricultural crops and human.
Beet armyworm, Spodoptera exigua, diamondback moth, Plutella xylostella and tobacco cutworm, Spodoptera litura are the three most serious pests of many economically important crops such as cruciferous crops, various vegetables and ornamental plants. Because these pests are known to be resistant to lots of chemical insecticides, integrated control using both or either entomophathogen and/or natural enemy is thought to be an attractive alternative for effective control. One of the obstacles using and expanding mycopesticide is narrow host ranges. At commercial farms, cultivating crops are seriously damaged by various Lepidopteran pests. Farmers want to use a microbial control agent which can control various host insects to reduce cost and labor. In previous study, we selected two entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus, which shown high virulence against beet armyworm. For wide use of the isolates in farm, we tested its host ranges, especially to diamondback moth and tobacco cutworm, which also are serious pest in Korea. The two isolates were shown a good control effect in leaf disc bioassy.
Microbe have been considered as potential control agents for pest, as alternative to chemical control methods. Among entomopathogens, fungi cause the mortality by penetrating the cuticle of pest and/or by metabolites such as toxin. Not only this direct control effect of fungi, but repellency of fungi also may be used to prevent the pest. Repellence effect of fungi is considered as inhibitory factor to control termite. A study was reported in Japan that termite was able to detect and remove the conidia of fungi on their surface. The termite can escape from fungal infection and protect their colony. There is few study that insect pest such as moth can detect and avoid the virulence fungi. Therefore, we has been conducting the detection and avoidance of beet armyworm to high pathogenic fungi, Paecilomyces fumosoroseus. Adult of the beet armyworm avoided oviposition at Chinese cabbage treated with P. fumosoroseus compare to control. This result may be used to prevent the infestation of moth in crop production.
Various insect pests and plant disease can outbreak in a field. For the effective control of pests and plant diseases during crop cultivation, farmers simultaneously or sequentially spray various eco-friendly agricultural materials (EFAM), chemical pesticides and microbial control agents on the same fields. It was reported that many agrochemicals are harmful to entomopathogenic fungi, especially some fungicides with broad spectrum activity that are routinely applied for the control of plant diseases. In addition, some pesticides may antagonize the potential insecticidal activity and efficiency of entomopathogenic fungi. Therefore, sometimes the utilization of fungal entomopathogen in forestry and agricultural production is limited because of the undesirable interference from some fungicides and pesticides. There is little research that examines the compatibility of these EFAMs with entomopathogenic fungi and the influence of EFAMs on the control efficacy of mycopesticides. We conducted a study of influence of pretreated eco-friendly agricultural materials on control efficacy of Isaria javanica isolate against sweet potato whitefly.
Entomopathogenic fungus is a useful control agent to sucking type insect such as whitefly and aphid. The fungi are influenced by some environmental factors such as relative humidity, temperature and UV and cause slow and fluctuation in pest control efficacy. Especially, UV kills conidia or spores of entomopathogenic fungi and a mycopesticide using fungi has short control period in field. UV intensity changes from season to season. Survival rate of entomopathognic fungi treated may differ from seasons and will show different control efficacy. Therefore, we conducted a study to estimate the persistence of an Isaria javanica isolate, which was already reported as sweet potato whitefly control agent, in potted greenhouse soil planted different crops. The number of survival spore decreased gradually and differ from seasons.