해조류에는 항산화, 항염증에 효과적인 다양한 생리 활성 화합물이 풍부하게 함유되어 있으며, 장에 유익한 섬유질이 다량 포함되어 있다. 이러한 특징들로 인하여 해조류는 기능성 식품 제조뿐만 아니라, 약리학, 의학적 응용 분야 등 다양한 산업 분야에서 중요한 자원으로 인식되고 있으며, 특히 해조류 발효 기술은 이러한 산업들에 다양한 방법으로 활용될 수 있다. 해조류는 새로운 생리 활성 화합물의 중요한 공급원으로 인정받고 있지만, 육상 식물 바이오매스에 비해 발전이 부족한 상태이다. 해조류를 산업적으로 사용하기 위해 이용되는 해조류 화합물 추출 기술에는 세포벽 처리의 어려움으로 인해 수율이 낮거나 비용 효율성이 떨어지는 등의 문제가 있으나, 최근에는 유산균과 효모종의 미생물을 이용하여 새로운 해조류 발효 제품을 만들어내는 기술이 발전하고 있다. 이러한 해조류 발효 제품은 기능성 식품 및 건강기능식품 시장에서 중요한 역할을 할 수 있으며, 소비자들에게 더 매력적인 제품을 제공할 수 있다. 해조류 발효는 해양 자원의 부가가치를 높이는 중요한 방법 중 하나로, 이를 통해 폴리페놀 함량, 항산화 활성, 생리활성 화합물의 생체 이용률을 증가시키고, 해조류의 감칠맛을 개선하여 소비자들의 만족도를 높일 수 있다. 또한, 해조류 발효는 대량의 양식 바이오매스를 보존할 수 있는 지속 가능한 가공 방법이며, 독성 화학 물질을 생략하여 자연스러운 추출 방법을 제공할 수 있다. 해조류 발효 기술은 아직 많은 연구가 필요하지만, 해조류 산업의 확대와 함께 미래에 매우 중요한 역할을 할 것으로 전망된다.
Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micromorphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.
Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2- TPR, CO2- TPD and N2- TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat −1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.
A substantial quantity of discarded tires has inflicted harm on the environment. Microwave pyrolysis of discarded tires emerges as an efficient and environmentally friendly method for their recycling. This research innovatively utilizes the characteristics of microwave rapid and selective heating to pyrolyze waste tires into porous graphene under the catalysis of KOH etching. Moreover, this study comprehensively investigates the dielectric characteristics and heating behavior of waste tires and different proportions of waste tire–KOH mixtures. It validates the preparation of graphene through KOH-catalyzed microwave pyrolysis of waste tires, tracking morphological and structural changes under varying temperature conditions. The results indicate that optimal dielectric performance of the material is achieved at an apparent density of 0.68 g/cm3 at room temperature. As the temperature increases, the dielectric constant gradually rises, particularly reaching a notable increase around 700 °C, and then stabilizes around 750 °C. Additionally, the study investigates the penetration depth and reflection loss of mixtures with different proportions, revealing the waste tire–KOH mass ratio of 1:2 demonstrates favorable dielectric properties. This research highlights the impressive microwave responsiveness of the waste tire–KOH mixture, Upon the addition of KOH, the mixed material exhibits an augmented dielectric constant and relative dielectric constant, supporting the viability of KOH-catalyzed microwave pyrolysis for producing porous graphene from waste tires. This method is expected to provide a new method for the valuable reuse of waste tires and a technology for large-scale, efficient and environmentally friendly production of graphene.
The economical manufacturing of high-quality graphene has been a significant challenge in its large-scale application. Previously, we used molten Sn and Cu as the heat-transfer agent to produce multilayer graphene on the surface of gas bubbles in a bubble column. However, element Sn and Cu have poor catalytic activity toward methane pyrolysis. To further improve the yield of graphene, we have added active Ni into Sn to construct a Sn–Ni alloy in this work. The results show that Sn–Ni alloy is much more active for methane pyrolysis, and thus more graphene is obtained. However, the graphene product is more defective and thicker because of the faster growth rate. By using 300 ml molten Sn–Ni alloy (70 mm height) and 500 sccm source gas ( CH4:Ar = 1:9), this approach produces graphene with a rate of 0.61 g/hr and a conversion rate of methane to carbon of 37.9% at 1250 ℃ and ambient pressure. The resulting graphene has an average atom layer number of 22, a crumpled structure and good electrical conductivity.
Building step-scheme (S-scheme) heterojunctions has recently emerged as a highly effective approach for developing superior photocatalysts for water purification. Herein, a C3N5/ Ag3PO4 (CA) S-scheme heterojunction was prepared by in situ growth of Ag3PO4 nanoparticles on 2D C3N5 nanosheets. Notably, under visible-light irridiation, CA exhibited significantly higher activity in the photodegradation of LEVO, which is about 28.38, 2.41, and 2.14 times higher than the rates for C3N5, Ag3PO4, and the mixture, respectively. Based on the radical scavenging experiments, the mechanism for enhanced photocatalytic performance has been analyzed, is attributed to improved interfacial charge separation, the elevated redox potential of photon-generated electrons and holes, and the increased generation of active species resulting from the S-scheme transfer of photoinduced carriers. Additionally, CA demonstrates greater stability than either C3N5 or Ag3PO4 alone in the photo-oxidation of LEVO and the photodegradation of RhB. In essence, this study not only deepens our comprehension of the photocatalytic mechanism of CA, but also pioneers a novel concept for the development of highly effective and stable S-type heterojunction photocatalysts.
Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.
Technetium has been identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. In this study, the sorption of Tc(IV) onto MX-80 bentonite, illite, and shale in ionic strength (I) 0.1–6 mol·kgw−1 (m) Na-Ca-Cl solutions at pHm = 4–9 and limestone at pHm = 5–9 was studied. Tc(IV) sorption on MX-80 increased with pHm from 4 to 6, reached the maximum at pHm = 6–7, and then gradually decreased with pHm from 7 to 9. Tc(IV) sorption on illite gradually increased with pHm from 4 to 7, and then decreased as pHm increased. The sorption properties of Tc(IV) on shale were quite similar to those on illite. Tc(IV) sorption on limestone slightly increased with pHm from 5 to 6 and then seemed to be constant at pHm = 6–9. Tc(IV) sorption on all four solids was independent of ionic strength (0.1–6 m). The 2 site protolysis non-electrostatic surface complexation and cation exchange model successfully simulated the sorption of Tc(IV) onto MX-80 and illite and the optimized values of surface complexation constants were estimated.
Technetium-99 is identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. The sorption behavior of Tc(IV) onto MX-80 and granite in Ca-Na-Cl solutions of varying ionic strength (0.05–1 mol·kgw−1 (m)) and across a pHm range of 4–9 was studied in this paper. Sorption of Tc(IV) was found to be independent of ionic strength in the range of 0.05 to 1 m for both MX-80 and granite. Sorption of Tc(IV) on MX-80 increased with pHm from 4 to 7 and then decreased with pHm from 8 to 9. Sorption of Tc(IV) on granite gradually increased with pHm from 4 to 8 and then became almost constant or slightly decreased with pHm from 8 to 9. A 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model successfully simulated sorption of Tc(IV) on MX-80 and granite. Optimized values of surface complexation constants (log K0) are proposed.
Photocatalytically splitting water into hydrogen upon semiconductors has tremendous potential for alleviating environmental and energy crisis issues. There is increasing attention on improving solar light utilization and engineering photogenerated charge transfer of TiO2 photocatalyst because it has advantages of low cost, non-toxicity, and high chemical stability. Herein, oxygen vacancies and cocatalysts (Cu and MoS2) were simultaneously introduced into TiO2 nanoparticles from protonic titanate by a one-pot solvothermal method. The composition and structure characterization confirmed that the pristine TiO2 nanoparticle was rich in oxygen vacancies. The photocatalytic performances of the composites were evaluated by solar-tohydrogen evolution test. The results revealed that both Cu-TiO2 and MoS2- TiO2 could improve the photocatalytic hydrogen evolution ability. Among them, 0.8% Cu-TiO2 showed the best hydrogen evolution rate of 7245.01 μmol·g−1·h−1, which was 3.57 and 1.34 times of 1.25% MoS2- TiO2 (2726.22 μmol·g−1·h−1) and pristine TiO2 material (2028.46 μmol·g−1·h−1), respectively. These two kinds of composites also had good stability for hydrogen evolution. Combined with the results of photocurrent density and electrochemical impedance spectra, the incorporation of oxygen vacancies and cocatalysts (Cu and MoS2) could not only enhance the light-harvesting of TiO2 but also improve the separation and transfer capabilities of light-induced charge carriers, thus promoting water splitting to hydrogen.
With the wide application of portable wearable devices, a variety of electronic energy storage devices, including microsupercapacitors (MSCs), have attracted wide attention. Laser-induced graphene (LIG) is widely used as electrode material for MSCs because of its large porosity and specific surface area. To further improve the performance of MSCs, it is an effective way to increase the specific surface area and the number of internal active sites of laser-induced graphene electrode materials. In this paper, N-doped polyimide/polyvinyl alcohol (PVA) as precursor was used to achieve in situ doping of nitrogen atoms in laser-induced graphene by laser irradiation. Through the addition of N atoms, nitrogen-doped laser-induced threedimensional porous graphene (N-LIG) exhibits large specific surface area, many active sites, and good wettability all of which are favorable conditions for enhancing the capacitive properties of laser-induced graphene. After assembly with PVA/H2SO4 as gel electrolyte, the high surface capacitance of the MSC device with N-LIG as electrode material is 16.57 mF cm− 2 at the scanning rate of 5 mV s− 1, which is much higher than the 2.89 mF cm− 2 of the MSC device with LIG as electrode material. In addition, MSC devices with N-LIG as electrode materials have shown excellent cyclic stability and flexibility in practical tests, so they have a high application prospect in the field of flexible wearable microelectronics.
This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassiumion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.
Chlorine is a crucial radionuclide that must be removed in irradiated nuclear graphite. Understanding the interaction between chlorine and graphene-based materials is essential for studying the removal process of 36Cl from irradiated nuclear graphite. In this study, first-principle density functional theory (DFT) was utilized to investigate the adsorption characteristic of chlorine on the original and reconstructed edges of graphene-based materials. Based on the calculation of adsorption energy of the structures after each step of adsorption, the most energetically favorable adsorption routes at four types of edge were determined: Along the armchair edge and reconstructed zigzag edge, the following adatoms would be adsorbed to compensate the distortion induced by the previously adsorbed atom. Meanwhile at the original zigzag edge, chlorine atoms would be adsorbed alternatively along the edge to minimize the repulsion between two adjacent chlorine atoms. The chemical nature of the bonds formed as a result of adsorption was elucidated through an examination of the density of states (DOS) for the two adsorbed chlorine atoms and the carbon atoms attached. Furthermore, to assess the relative stability of the adsorption structures, formation energy of all energetically favorable structures following adsorption was computed. Consequently, the predominant adsorption structure was identified as the reconstructed armchair edge with two chlorine atoms adsorbed. The desorption process of 36Cl2 from the predominant structure following adsorption was simulated, revealing an energy barrier of 1.14 V for desorption. Comparison with experimental results suggests that the chlorine removed from reconstructed armchair edges significantly contributes to the low-temperature removal stage of 36Cl from irradiated nuclear graphite.
In this paper, the formation and characterization of Pt2, Pt3 as well as Pt4 atomic clusters in cup-stacked carbon nanotubes (CSCNTs) are evaluated by DFT to examine the adsorption capacity under the clusters. The results show that the Pt clusters move toward the bottom edge or form rings in the optimized stable structure. Pt far from the carbon substrate possesses more active electrons and adsorption advantages. The three clusters can adsorb up to 17, 18, and 16 hydrogen molecules. Loading metal clusters at the bottom edge maintains a relatively good adsorption property despite the low binding energy through comparative studies. The adsorption capacity does not increase with the number of Pt for metal aggregation reducing the hydrogen adsorption area thus impacting the hydrogen storage ability and the aggregation phenomenon limiting the action of Pt metal. During adsorption, chemisorption occurs only in the Pt2 cluster, while multiple hydrogen molecules achieve physiochemical adsorption in the Pt3 and Pt4 clusters. Compared with the atomic loading of the dispersion system in equal quantities, the dispersion system features higher molecular stability and can significantly reduce the energy of the carbon substrates, providing more sites for hydrogen adsorption in space.
양도담보는 비전형적담보의 중요한 유형이다. 또한, 최근 중국민법학계의 관심 이 집중되고 있는 주제이다. 중국에서는 <민법전>과 <담보제도 해석>이 공포된 후, 양도담보를 비전형담보의 한 유형으로 볼 것인가와 관련해 집중적인 논의가 있었다. 이에 본고는 해석학의 측면에서 담보이론을 해석하며, <민법전>과 <담보 제도해석>의 내용을 종합적으로 분석하였다. 이를 통해 양도담보는 비전형담보의 일종으로서 <민법전>에서 인정해야 한다는 결론을 도출하였다. 한편 집합물의 양도담보와 관련해, 본고는 집합물의 법적 성질 및 물상대위에 관해 분석하였다. 본고는 집합물양도담보는 이론적 및 실천적 가치가 있다는 것 을 논증하였다. 또한, 집합물의 양도담보의 공시효력을 강화하고, 집합물양도담보 의 물상대위성을 인정해야 한다고 보았다. 이러한 태도는 채권의 실현을 보장하 는데 기여할 수 있으며, 특히 담보물이 대체된 경우 채권자의 이익을 보호하는데 유리하다. 그리고 거래안전도 강화할 수 있다. 그 밖에도 본고는 집합물의 과잉담보 문제에 대해 다음과 같은 해결방안을 제 시하였다. 우선 보증을 설정하기 전에 집합물에 대한 합리적인 평가가 진행되어 야 한다. 또한 계약당사자가 합당한 협상을 진행해야 한다. 이는 위험을 예방하 고 분쟁을 피할 수 있을 것이다. 한편, 집합물에 대해 담보권을 실행하기 위해 환가하는 경우에는 “일물일권주의”에 따라 집합물의 분리를 인정하여 담보책임을 명확히 해야 할 것으로 보았다. 이러한 방법은 당사자의 형평을 도모할 수 있고, 금융거래의 건강한 발전을 촉진할 수 있을 것이다.
Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
The raw material selected for this research was Brazil chestnut shells (BCs), which were utilized to gain porous carbon as a positive electrode for lithium–sulfur batteries (LSBs). The effects of N/S co-doped on the electrochemical properties of porous carbon materials were studied using thiourea as nitrogen and sulfur sources. The experimental results indicate that the N/S co-doped carbon materials have a higher mesopore ratio than the undoped porous carbon materials. The porous carbon material NSPC-2 has a lotus-like structure with uniform pore distribution. The N and S doping contents are 2.5% and 5.4%. The prepared N/S co-doped porous carbon materials were combined with S, respectively, and three kinds of sulfur carbon composites were obtained. Among them, the composite NSPC-2/S can achieve the initial specific discharge capacity of 1018.6 mAh g− 1 at 0.2 C rate. At 1 C rate, the initial discharge capacity of the material is 730.6 mAh g− 1, and the coulomb efficiency is 98.6% and the capacity retention rate is 71.5% after 400 charge–discharge cycles.
A phenylboric acid functionalized carbon dot (2-FPBA-CD) for rapid fluorescent sensing of glucose in blood was synthesized by simply mixing N, S-doped carbon dots (CDs) with phenylboric acid at room temperature. At pH 7.4, the response of 2-FPBA-CD to glucose could reach equilibrium in a very short time (10 min), with a wide responsive linear range of 19.70 μM to 2.54 mM, which can be applied to the detection of glucose in serum. The mechanism studies showed that the layered carbon film of 2-FPBA-CD aggregated after adding glucose, thereby leading to the fluorescence quenching of 2-FPBA-CD.
Single-walled carbon nanotubes (SWNT) have a strong and stable near-infrared (nIR) fluorescence that can be used to selectively detect target analytes, even at the single molecule level, through changes in either their fluorescence intensity or emission peak wavelength. SWNTs have been employed as NIR optical sensors for detecting a variety of analytes. However, high costs, long fabrication times, and poor distributions limit the current methods for immobilizing SWNT sensors on solid substrates. Recently, our group reported a protocol for SWNT immobilization with high fluorescence yield, longevity, fluorescence distribution, and sensor response, unfortunately this process takes 5 days to complete. Herein we report an improved method to immobilize SWNT sensors that only takes 2 days and results in higher fluorescence intensity while maintaining a high level of SWNT distribution. We performed surface morphology and chemical composition tests on the original and new synthesis methods and compared the sensor response rates. The development of this new method of attaching SWNT sensors to a platform allows for creation of a sensing system in just 2 days without sacrificing the advantageous characteristics of the original, 5-day platforms.
pH plays a pivotal role in influencing various aspects of proton-coupled electron transfer (PCET) reactions in electrochemical systems. These reactions are affected by pH in terms of mass transport, electrochemical double layer (EDL) structure, and surface adsorption energy, all of which impact the overall electrochemical processes. This review article aims to provide a comprehensive understanding of the research progress made in elucidating the effects of pH on different electrochemical reactions, the hydrogen evolution reaction/hydrogen oxidation reaction (HER/HOR), oxygen reduction reaction/oxygen evolution reaction (ORR/OER), and carbon dioxide reduction reaction ( CO2RR). To embark on this endeavor, we have conducted a bibliometric analysis to clearly outline of the research trends and advancements in the field concerning the pH effects. Subsequently, we present a systematic overview of the mechanisms governing these reactions, with a special focus on pH’s influence on both the proton and electron aspects. We conclude by discussing the current challenges in this area and suggesting future research avenues that could further our understanding of pH's role in electrochemical reactions.