This study investigated the changes in fruit quality characteristics and how they correlated with the storage conditions and storage period. The firmness of peaches stored in cold storage decreased rapidly after 14 days (13.0 N), but the firmness of peaches stored in CA storage remained high for 28 days (20.9 N). The titratable acidity of peaches stored in cold storage decreased rapidly from 0.23 to 0.26% after 21 days, but there was no change until 7 days for peaches stored in CA storage, and then it decreased to 0.23% after 28 days. The soluble solid content increased significantly as the storage period elapsed under cold storage, but there was no notable difference for CA storage. After 28 days of storage, the weight loss rate of peaches stored in CA storage(8%) was lower than peaches stored in cold storage( 23%). The was significant background color for peaches stored in cold storage after 7 days, and changed to a completely different color after 28 days of storage. As for the correlation between the quality characteristics of peach fruits stored at low temperatures, weight loss rate, sunny side ΔE value, background color lightness, background color redness, and ΔE value showed high correlations, and CA storage showed high correlations with weight loss rate and coloration. In conclusion, according to our study results, 'Kunika' peaches can be stored for 14 days in low-temperature storage and up to 28 days in CA storage, and it is thought that the weight loss rate, firmness, and coloration during storage can be used as factors for quality prediction.
To predict the quality of Fuji apples, this study investigated the characteristics and correlations of their fruit quality according to storage method and storage period. Fuji apples were stored in cold storage at 0oC for 250 days with no treatment, with 1-MCP treatment, and under controlled atmosphere (CA) storage. According to the storage method, the weight loss was the lowest in the CA-treated group (3.43%) until 250 days, and the change in fruit firmness was the least in the 1-MCP group. The titratable acidity remained above 0.2% for 1-MCP and CA storage until 250 days and decreased to 0.1% for cold storage. The principal component analysis showed a difference in quality between the 1-MCP group, CA group, and cold storage group after 200 days of storage. Six types of volatile components were commonly detected in all storage methods, while three types of independent components with a low threshold were detected in 1-MCP. Weight loss, titrable acidity, and firmness were highly correlated with physicochemical quality, and CA storage was judged to be a long-term storage technology that satisfies consumers’ tastes by maintaining excellent flavor and quality.
본 논문은 필리핀 로컬 스페셜티 커피에 대한 소비자의 선호도를 밝히고 일반커피 대비 스페셜티 커피에 대해 소비자들이 부여하는 가치를 추정하는 것에 목적이 있다. 특히 소비자 잉여를 극대화하는 스페셜티 커피의 최적 가격을 분석하여 커피 농가를 포함한 생산자, 투자자들의 이해를 높이고자 하였다. 주 요 연구 결과는 다음과 같다. 1. 응답자들의 연령 및 성별에 따라 소비하는 커피의 형태가 다르게 나타남. 그러나 공통적으로 주로 아침에, 집에서, 습관적으로 커피를 섭취함. 가장 선호하는 커피의 맛은 단맛과 쓴맛임. 대부분의 소비자들은 양조 커피, 압착 커피를 소비함. 2. 고품질의 원두를 엄선하여 만들어지는 스페셜티 등급의 커피 한 잔에 대한 소비자의 평균 지불의사가격은 일반 커피 (42페소) 대비 271% 높은 156페소(약 3.2달러)로 분석됨. 연령이 어릴수록, 학력과 소득이 높을수록, 스페셜티 커피에 대한 사전적 인지도가 높을수록, 향후 스페셜티 커피에 대한 구매 의사가 강할수록 스페셜티 커피에 보다 높은 지불의사가격을 표현함. 3. 로컬 스페셜티 커피는 원두 구매, 가공 및 로스팅, 등급 평가 비용이 발생하여 적절한 가격 인상이 요구됨. 기존 일반 커피 가격대비 40% 인상까지 소비자 후생이 증가하는 것으로 나타나는 반면, 스페셜티 커피 가격이 일반커피 가격대비 50% 이상 인상되는 경우에는 소비자들의 후생이 감소하는 것으로 나타남. 4. 필리핀 소비자들이 지역에서 생산된 스페셜티 커피에 대한 높은 선호를 갖고 있다는 점을 고려하면 현지 스페셜티 커피에 대한 대대적인 홍보가 로컬 스페셜티 커피에 대한 인지도를 높이고 시장 확대로 이어질 수 있음. 이는 필리핀 커피 로드맵, 필리핀 농무부의 지속 가능한 발전 계획 목표 달성에 기여할 것임.
소고기의 건식 숙성 기간을 단축하고자 연육과 관련된 효소 활성이 높은 15-36oC 온도범위에서 저습도로 숙성할 수 있는 라디오파 숙성장치를 개발하였다. 이 장치는 평행 판 전극 사이에 소고기를 넣고 라디오파를 가하여 유전가열이 되는 현상으로 고기의 온도를 높였고, 냉풍을 이용하여 습도를 낮춰서 고기표면이 건조되게 하였다. 이 장치를 이용하여 2등급 소고기 채끝 부위를 숙성시킨 결과 40 W/ kg로 가열하여 고기 품온이 30oC를 초과하는 온도 범위 24 h 숙성할 경우 12.3%, 10-30oC 온도 범위에서 숙성시킬 경우 55.2% 연육효과가 나타났다. 라디오파 숙성 중 제상 과정 없이 냉풍을 계속 가할 경우 미생물 증식에 의한 문제가 발생하지 않았으며, 이러한 연육 효과는 기존 건식숙 성 21일간 절단강도 17% 감소하는 것에 비해 매우 단시간 나타난 것으로 숙성기간을 크게 단축할 수 있음을 확인 하였다. 닭고기와 돼지고기는 육질의 차이로 라디오파 숙성에 의한 연육 효과가 나타나지 않았다.
When kimchi is frozen and thawed, the amount of lactic acid bacteria (LAB) and yeast is usually reduced by more than 2 logs, and its texture including its crispness and hardness are changed significantly. As a possible means to minimize these problems, various freezing (direct freezer with -25, -40, and -60oC and plate freezer with -40oC) and thawing methods (radio frequency (RF) thawing, plate thawing, and room temperature thawing) were investigated in terms of the amount of LAB and texture of kimchi. From the use of plate freezing and plate thawing, the amount of LAB of white cabbage kimchi could be maintained by more than 10% of its initial amount while that for red cabbage kimchi could be maintained by more than the initial amount. Pretreatment with trehalose (19 oBrix soluble solid content) to salted Chinese cabbage could maintain kimchi’s hardness and crispness. In order to maintain the texture and the amount of LAB in kimchi, the use of the plate freezer (-40oC) and the plate thawing (20oC) seemed to be effective with the assistance of trehalose.
Commercial direct refrigerators have good energy efficiency, but are difficult to use for supercooled storage due to their large temperature deviation. Placing insulators and conductors inside the refrigerator could reduce these temperature deviations to within 0.3 degrees, allowing for the supercooled storage. The supercooled storage of salted Chinese cabbages during ten weeks was progressed to compare the other low temperature storages. The nucleation temperatures of salted Chinese cabbage were around -2.5oC and the freezing points were around -0.4oC, so -2oC was selected for the supercooled storage. The growth rate of lactic acid bacteria and yeast at -2oC storage was lower than that at 2oC storage. The reducing sugar was maintained higher due to the growth rate of lactic acid bacteria. The supercooled storage had an effect of delaying the fermentation of the salted Chinese cabbage, which may have the effect of delaying the fermentation of kimchi. This enhancement method of the direct refrigerator was effective for the supercooled storage and would be promising for commercial use.
For the vessel export of strawberries, modified atmosphere package (MAP) using polyamide (PA) film and linear low density polyethylene (LLDPE) film was investigated to extend the shelf life of strawberries. Because the temperature and relative humidity changes of the MAP were lower than the changes of the control, the weight loss of the MAP were lower than that of the control. The low oxygen level and high carbon dioxide level were effective to decrease the fungal decay rate and to increase the hardness of strawberries. The Hunter’s color differences before and after storage showed no distinct difference between the MAP and the control. The lightness had a tendency to decrease while the redness increased. There were no significant changes of the soluble solids during the storage. The shelf life of strawberries could be extended to 16 days using the MAP considering the weight loss and the fungal decay rate. Thus, this MAP method using PA film and LLDPE film was effective to extend the shelf life of strawberries.
The main purposes of this study were to identify the factors affecting the supercooling property and to improve the possibility of supercooling storage of fruits and vegetables. Freezing point and nucleation temperature, moisture content, hardness, sugar content, and pH of nineteen fruits and vegetables were measured and Pearson correlation analysis was performed. Freezing point showed a statistically significant correlation with moisture content and sugar content (p<0.01), while ice nucleation temperature showed a correlation (p<0.05) only for sugar content. In particular, the water content and sugar content did not show any correlation with the freezing supercooling difference (FSD). From the correlation analysis between FSD, aerobic bacteria, lactic acid bacteria, yeast, and mold, FSD showed a correlation (p<0.01) with aerobic bacteria. The experiments of the saline solutions inoculated with aerobic bacteria at different concentrations showed FSDs of about 2 for saline inoculated with 9.4 log CFU/mL and about 6 for saline inoculated lower than 5 log CFU/mL. Therefore, the aerobic bacteria concentration was determined to be a key factor affecting the supercooling storage of fruits and vegetables.
The variations of internal temperature, relative humidity (RH) and gas concentration in the pallet modified atmosphere package (MAP), using polyamide (PA) film and linear low density polyethylene (LLDPE) film, were investigated to extend the shelf life of tomatoes and paprikas. The temperature and RH inside the MAP were higher than that in the cold room, but there was no water condensation inside the MA film. The ethylene concentration in the MAP was maintained below 10 ppm. Oxygen level was stabilized at 2 to 5% during the storage and carbon dioxide level was also stabilized at 15 to 20%. The weight loss of the MAP tomatoes and paprikas was lower than that of the control because the RH in the pallet MAP was higher than that of the cold room. The fungal decay rate in the pallet MAP was also lower than that in the control due to a low oxygen concentration rate. There were no significant differences in the soluble solids, titratable acidity and Hunter’s color, but differences did exist in the hardness between the MAP and the control. So, this pallet MAP method was effective at extending the shelf life of tomatoes and paprikas considering the weight loss, fungal decay and hardness.
Salt, as food, is the most essential element for human survival due to its significant physiological functions. Here, we report the simultaneous detection of Pb and Cd in sea salt by square wave anodic stripping voltammetry (SWASV). Stripping voltammetric measurements were conducted using a manufactured rotating disk electrode system (MRDES). The detection limit was 3.6±0.18 μgL−1 for Pb and 3.9±0.37 μgL−1 Cd in NaCl solution. When the pH increased from 5.5 to 8.5, the peak currents of Pb and Cd decreased. At a pH of 8.3, the ratio of the current drop compared with that at a pH of 5.5 was 0.6 for Pb and 0.73 for Cd. The concentrations corrected by the current drop are in agreement with the concentrations obtained with ICP (inductively coupled plasma). This system demonstrates the reliable detection of heavy metals in aqueous media and, at a high Na + concentration, the successful application for the determination of Pb and Cd in sea salts.
Salt, as food, is the most essential element for human survival due to its significant physiological functions. Here, we report the simultaneous detection of Pb and Cd in sea salt by square wave anodic stripping voltammetry (SWASV). Stripping voltammetric measurements were conducted using a manufactured rotating disk electrode system (MRDES). The detection limit was 3.6±0.18 µgL− 1 for Pb and 3.9±0.37 µgL− 1 Cd in NaCl solution. When the pH increased from 5.5 to 8.5, the peak currents of Pb and Cd decreased. At a pH of 8.3, the ratio of the current drop compared with that at a pH of 5.5 was 0.6 for Pb and 0.73 for Cd. The concentrations corrected by the current drop are in agreement with the concentrations obtained with ICP (inductively coupled plasma). This system demonstrates the reliable detection of heavy metals in aqueous media and, at a high Na + concentration, the successful application for the determination of Pb and Cd in sea salts.
This study investigated the effects of 27.12 MHz radio frequency (RF) heating on heat transfer phenomena during the thawing process of frozen food. To determine the velocity of the RF thawing machine, samples were frozen at -80oC and subjected to different power treatments. The phase change times (-5 to 0oC) of frozen radish were 30, 26, 13, and 8 min; those of pork sirloin were 38, 25, 11, and 5 min; those of rump were 23, 17, 11, and 6 min; those of chicken breast were 42, 29, 13, and 9 min; and those of tuna were 25, 23, 10, and 5 min at 50, 100, 200, and 400 W, respectively. The heating limit temperatures of the radish, pork sirloin, rump, chicken breast, and tuna samples were 19.5, 9.2, 21.8, 8.8, and 16.8oC at 50 W; 23.5, 15.5, 27.3, 12.3, and 19oC at 100 W; 42, 26.9, 45.7, 22.1, and 39.4oC at 200 W; and 48.5, 54.7, 63.6, 57.3, and 44.9oC at 400 W. These results suggest that high-power RF improves thawing velocity and heating limit temperatures, and that an improvement on the operation of the RF thawing machine, according to food temperatures, is needed.