검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 70

        21.
        2017.05 서비스 종료(열람 제한)
        Background : The practice of keeping the medicinal herbs at room temperature causes many problems, but due to lack of sufficient field research and study, it is difficult to improve related regulations and safety management. Methods and Results : The Cnidium Rhizome and Angelica gigas Root were inoculated with Lasioderma serricorne F. and incubated at 28℃ for 2.5 months and 5 months. After five months, the number of Lasioderma serricorne F. in Cnidium Rhizome increased from 30 to 1,429 (about 47 times). In the same period, the number of insects in Angelica gigas Root increased from 30 to 663 (about 22 times). Due to the rapid increase in pest population, hygiene deteriorated, changes in the active ingredient and appearance quality of the herbal medicines, which greatly damaged the value of the herbal medicine. Conclusions : These results show that current regulation requiring only sealing and not specifying the storage temperature do not guarantee quality safety. Therefore, it is necessary to establish appropriate preservation standards and improve management regulations in order to preserve safety.
        22.
        2016.10 서비스 종료(열람 제한)
        Background : Angelica gigas is a biennial or short lived perennial plant found in China, Japan, and Korea. The root of Angelica gigas has been used in oriental traditional medicine and is marketed as a functional food product in Europe and North America. Cham-Dang-Gui (Korean Angelica, the dried root of Angelica gigas Nakai (AGN)) has been principally cultivated in Korea and used as a Korean medicinal herb. It contains several chemicals, such as pyranocoumarins, essential oils, and polyacetylenes. Methods and Results : Fresh Angelica gigas Nakai was purchased from Pyeongchang (Korea). Standard samples of D, DA were obtained from Korea Promotion Institute for Traditional Medicine Industry (Gyeongsan, Korea). Soluplus was purchased from BASF (Ludwigshafen, Germany). AGN was dried in the oven at 55°C for 24 h and cooled at room temperature. The AGN sample was then stored at 4°C until milling. Oral solid formulations based on Angelica gigas Nakai and Soluplus were prepared by the hot melt extrusion (HME) method. AGN was pulverized into coarse and ultrafine particles, and their particle size and morphology were investigated. Ultrafine AGN particles were used in the HME process with high shear to produce AGN-based formulations. In simulated gastrointestinal fluids (pH 1.2 and pH 6.8) and water, significantly higher amounts of the major active components of AGN, decursin (D) and decursinol angelate (DA), were extracted from the HME-processed AGN/Soluplus group than the AGN EtOH extract group (p < 0.05). Based on an in vivo pharmacokinetic study in rats, the relative oral bioavailability of decursinol (DOH), a hepatic metabolite of D and DA, in administered mice was 8.75-fold higher than in AGN EtOH ext-treated group. Conclusion : Soluplus-included solid formulation prepared by HME can be a promising carrier for oral delivery of phytochemicals. These findings suggest that HME-processed AGN/Soluplus formulation could be a promising therapeutic candidate for oral bioavailability.
        23.
        2016.10 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic perennial plant. A. gigas, also called DangGui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas. but, Chinese using Angelica sinensis and Japanese using Angelica acutiloba with the same name 'DangGui'. The biggest problem in the use of A. gigas is the confusion with A. acutiloba or A. sinensis. This confusion can cause an medical accident or lack of pharmacological ingredients. In this study, we developed chloroplast InDel markers that can distinguish A. gigas, A. acutiloba or A. sinensis. Methods and Results : We collected 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA InDel region of between A. gigas and A. acutiloba. PCR were performed on the 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis (5 repeats each). Electrophoresis was performed using fragment analyzer automated CE system. We designed 6 InDel primer sets and the primer sets amplified the amplicons effectively. Three of the 6 primer sets showed polymorphism. Conclusion : We could distinguish A. gigas, A. acutiloba, and A. sinensis using 2 newly developed InDel markers.
        24.
        2016.10 서비스 종료(열람 제한)
        Background : In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results : A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions : These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        25.
        2016.10 서비스 종료(열람 제한)
        Background : This study for the stable production and supply of seeds of Angelica gigas Nakai(Man-chu Korean Angelica), when seeds harvested using nets, seed productivity was investigated. Methods and Results : Planting density is 50 × 25cm, Fertilizer per 10a was sprayed amount of N-P2O5-K2O = 16-17-10kg. And the amount of compost per 10a was sprayed 3000kg. Seed harvesting nets were used for a time formed the endosperm of the seeds (later in mid-August to late). And net for seed production was used for onion nets (at least 13 × 18cm). Shoot growth conditions were as follows. Bolting rate was 89.0% in the untreated, the treated group was 93.1%. The length and thickness of each stem was 129.3 ~ 130.8cm, 1.8cm. The number of nodes per plant was 6.7 ~ 7.5 pieces, and the number of petiole was 14.8 ~ 15.5 per plant. The number of umbel was 10.3 ~ 11.1 piece per plant, and number of deleted umbel was 7.1 ~ 7.2 piece. Seed weight per plant was 24.2g of the net treatment, but ripening seeds 19.6g, 1000 grain weight were all treated and untreated 2.8g. The total seed weight per plant, the net treated was 24.2g, was the weight of the ripening seeds 19.6g. The weight of the ripening seeds were heavier than those of the control. However, the weight of 1000 grain were both treated and untreated 2.8g. When treated nets, the total seed yield per 10a was 88.0kg production, increased by 60.9% compared to untreated. In addition, the ripening seed production per 10a was 71.5kg production, increased by 50.1% compared to untreated. Researching after germination Seed Production, germination rate was 50.8% in the control group and the treatment group was 54.9%. When applying the germination rate, high-quality seed production per 10a was able to produce 39.2kg, compared to control obtain the results increased by 65%. Conclusion : Through the above results, When producing angelica seed, use of net for seed production is thought to be used as a way to prevent early shattering and insect damage.(True bug, etc.).
        26.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results: A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions: These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        27.
        2016.05 서비스 종료(열람 제한)
        Background : Angelica gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. A. gigas has many active constituents such as dercursin, decursinol angelate, nodakenetin, nodakenin, β-sisterol or α -pinene. But, there is no research on the gexpression of the genes related to saponin biosynthesis from A. gigas. In this study, we compared the expression of saponin biosynthesis related genes from various organs of A. gigas. Methods and Results : The reads of Angelica gigas mRNAs were produced using Illumina Hiseq 2000, and the reads were assembled to produce 113,597 contigs using CLC Genomic Workbench. To select the saponin biosynthesis genes, assembled contigs were subjected to BLAST analysis at NCBI site. RNAs were extracted from five tissues, roots, stems, flowers, old leaves and young leaves of A. gigas. We produced total of 16 gene specific primers and used for RT-PCR. PCR conditions composed pre-denaturation at 95℃ for 3min, then 35 cycles of 95℃ for 30 sec, 57℃ for 30sec and 72℃ for 1min, and a final extension at 72℃ for 5min. Electrophoresis performed at 100 V, 30 min using 1.2% gel. Our experiment shows that A. gigas has several genes related to saponin biosynthesis and the genes were expressed from variety of organs. Conclusion : From the above results, we may suggest A. gigas genes related to the biosynthesis of saponins.
        28.
        2016.05 서비스 종료(열람 제한)
        Background : Angelica gigas N., one of the herbs has been used most frequently with Glycyrrhiza uralensis. It is usually cultivated in semi-alpine of more than 400m in North Central province of South Korea. However its production is becoming more unstable due to the climate change especially abnormally high temperature. In particular, the environmental change may cause not only a change in production but also a change in active ingredient of Angelica gigas N. This study was performed to investigate these problems. Methods and Results : This study was carried out in temperature gradient tunnel(TGT) in Pyeongchang, Gangwon province. Temperature conditions were maintained the ambient+0~2℃ (T1), ambient+2~4℃(T2), ambient+4~5℃(T3) throughout the year. We planted and grown one year old seedlings of Angelica gigas N. from mid-April to early November. As a result, there was no difference in early growth of Angelica gigas N. among the temperature range but there was a difference between each treatment region from the survey in June. Average length of soot in T1, T2, T3 was the largest(36cm), medium(27cm), smallest(19cm) respectively. This trend was similar to a survey in September and November. Each of death rate was 0%(T1), 19%(T2), 71%(T3). There was no bolting according to the temperature. The yield of a plant of Angelica gigas N. was 476g(T1), 76g(T2), 26g(T3), respectively. Production of Angelica gigas N. is foreseen 84.7% and 94.5% reduction if the temperature rises to 3±1℃ and 4±1℃ more than it is at present based on temperature in Pyeongchang 2015. Total amount of Decursin was reduced at higher temperatures. Conclusion : The results of this study show that quality and production of Angelica gigas N. is expected to decline significantly if the temperature rise than the current. Therefore development of various techniques is required to response to climate change.
        29.
        2016.05 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic biennial or short lived perennial plant. A. gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas, but, they are using Angelica sinensis in China and Angelica acutiloba in Japan to obtain many active constituents. The biggest problem in the using of A. gigas would be the confusion with A. acutiloba or A. sinensis. These three plants can't be distinguished by appearance. And the constituent ratios of the three plants are different. This confusion can cause an accident or the pharmaceutical effects do not meet the expectations. In this study, we developed chloroplast SSR markers that can distinguish A. gigas, A. acutiloba and A. sinensis. Methods and Results : We collected A. gigas, A. acutiloba and A. sinensis. and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA SSR region of A. gigas. PCR were performed on the three angelica plant samples (in 5 repeat). Conclusion : We made five primer sets from five SSR regions of A. gigas cpDNA. All of the primer sets amplified the amplicon effectively. Two of the 5 primer sets had polymorphism. We can distinguish A. gigas, A. acutiloba, and A. sinensis using the 2 primer sets
        1 2 3 4