검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        21.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al2O3-SiC ceramic composites are produced using pressureless sintering, and their plasma resistance, electrical resistance, and mechanical properties are evaluated to confirm their applicability as electrostatic-discharge-safe components for semiconductor devices. Through the addition of Mg and Y nitrate sintering aids, it is confirmed that even if SiC content exceeded 10%, complete densification is possible by pressureless sintering. By the uniform distribution of SiC, the total grain growth is suppressed to about 1 μm; thus an Al2O3-SiC sintered body with a high strength over 600 MPa is obtained. The optimum amount of SiC to satisfy all the desired properties of electrostatic-discharge-safe ceramic components is obtained by finding the correlation between the plasma resistance and the electrical resistivity as a function of SiC amount.
        4,000원
        22.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.
        4,000원
        23.
        2017.11 구독 인증기관·개인회원 무료
        Ceramic membranes can be applied under extreme operating conditions such as low pH, high pressure and high temperature. In particular SiC has excellent mechanical properties and also has excellent properties related to membrane performance. However, high processing temperature increases cost of SiC products and thus limit’s its use. In this study oxidation bonding technique was used to fabricate cost-effective SiC microfiltration membrane at low temperature. The oxidation behavior at different thermal treatments was related with pore morphology and ultimately the membrane permeability. We have found that the membrane made by coating of oxidation bonded SiC layer over clay-bonded SiC support, sintered at 1000-1100°C could make a defect-free microfiltration membrane with pure water permeability above 700 LMH per bar. The membrane has narrow pore size distribution with average pore size about 0.1 μm.
        24.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent industrial developments have increased the use of Volatile Organic Compounds (VOCs). Odors (e.g., are hydrogen sulfide, mercaptan- type, amine- type and other irritating pungent gaseous or volatile substances)., which are disgusting and disgusting to humans. Currently, regenerative thermal oxidation (RTO), regenerative catalytic oxidation (RCO), Carbon Adsorption Tower, etc. are used for their control to remove VOCs. In this experiment, we report the use of silicon carbide (SiC) for the control of four common VOCs called BTEX (i.e., benzene, toluene, ethyl benzene and, xylene (BTEX))., which is a representative material of VOCs, was removed by using silicon carbide (SiC). The heating SiC was heated be tween 400oC and 700oC in a microwave,. As a result, we observed the removal efficiency of BTEX from 10 ppm to 50 ppm was. At 400oC and 500oC, 0.6~60.3% and 11~64.7% the removal efficiency were achieved, with exponential increase at the temperature from 500oC. At 600oC, it showed more than 69.0~100% removal efficiency of most BTEX materials. Finally, At 700oC, it was confirmed that all BTEX materials were completely removed.
        4,000원
        25.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        4H- and 6H-SiC grown by physical vapor transport method were investigated by transmission electron microscopy (TEM). From the TEM diffraction patterns observed along the [11-20] zone axis, 4H- and 6H-SiC were identified due to their additional diffraction spots, indicating atomic stacking sequences. However, identification was not possible in the [10-10] zone axis due to the absence of additional diffraction spots. Basal plane dislocations (BPDs) were investigated in the TEM specimen prepared along the [10-10] zone axis using the two-beam technique. BPDs were two Shockley partial dislocations with a stacking fault (SF) between them. Shockley partial BPDs arrayed along the [0001] growth direction were observed in the investigated 4H-SiC. This arrayed configuration of Shockley partial BPDs cannot be recognized from the plan view TEM with the [0001] zone axis. The evaluated distances between the two Shockley partial dislocations for the investigated samples were similar to the equilibrium distance, with values of several hundreds of nanometers or even values as large as over a few micrometers.
        4,000원
        26.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at 200 oC was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to 1600 oC for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the α-SiC phase; peaks for β-SiC were newly appeared. The formation of β-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial α-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at 1000 oC. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.
        4,000원
        27.
        2016.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous SiC beads were prepared by freeze-drying a polycarbosilane (PCS) emulsion. The water-in-oil (w/o) emulsion, which was composed of water, PCS dissolved p-xylene, and sodium xylenesulfonate (SXS) as an emulsifier, was frozen by dropping it onto a liquid N2 bath; this process resulted in 1~2 mm sized beads. Beads were cured at 200 oC for 1 h in air and heat-treated at 800 oC and 1400 oC for 1 h in an Ar gas flow. Two types of pores, lamella-shaped and spherical pores, were observed. Lamellar-shaped pores were found to develop during the freezing of the xylene solvent. Water droplets in the w/o emulsion were changed into spherical pores under freeze-drying. At 1400 oC of heat-treatment, porous SiC was synthesized with a low level of impurities.
        4,000원
        28.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of 10-20 μm. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at 1100oC upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at 1650oC for more than 1 h.
        4,000원
        29.
        2015.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.
        4,000원
        30.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of 1650 oC for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.
        4,000원
        32.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.
        4,000원
        33.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of 565-585˚C. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at 580˚C for Al-Zn-Mg powders (composition A), 97.9% at 575˚C for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at 570˚C for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.
        4,000원
        34.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at 1500-1650˚C has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at 1500˚C obtains nearly stoichiometric composition, the composition of the SiC layer coated at 1300-1400˚C shows discrepancy from stoichiometric ratio(1:1). 3-7μm grain size of SiC layer coated at 1500˚C is decreased to sub-micrometer (< 1μm) -2μm grain size when coated at 1400˚C, and further decreased to nano grain size when coated at 1300-1350˚C. Moreover, the high density of SiC layer (≥3.19g/cm3) which is easily obtained at 1500˚C coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.
        4,000원
        35.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Process conditions for the impregnation of polycarbosilane preceramic polymer into SiC-based composites were investigated. Two kinds of preceramic polymer (PCP) was impregnated into SiC-fiber fabrics with different solvents of n-hexane and divinylbenzene (DVB). Both microstructural observations and mechanical tests were conducted to evaluate the impregnation. The matrix phases were particulated in the case of hexane solvents. Apparent relative density of the matrix was about 78.8%. The density of matrix was increased to about 96.1-98.8% when the DVB was used; however, brittle fracture was observed during a bending test. The modulus of toughness was less than 0.74J/m3. The fabric impregnated with a mixed PCP-dissolved solution showed intermediate characteristics with relative high density of filling (apparent density of ~96.1%) as well as proper bending behavior. The modulus of toughness was increased to about 5.31J/m3. The composites developed by changing the precursor and solvent suggested the possibility of fabricating SiCf/SiC composites without a fiber to matrix interphase coating.
        4,000원
        36.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.
        4,000원
        37.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-quality β-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense β-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane (SiH4) and acetylene (C2H2) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of β-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free β-SiC coating layers are crystallized in β-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.
        4,000원
        38.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nano-sized β-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. SiO2 nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. SiO2 and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at 80˚C in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at 1400~1500˚C for 4 h with a heating rate of 10˚C/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.
        3,000원
        39.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of clay, aluminum hydroxide, and carbon powder on the sintering of a Si/SiC mixture from photovoltaic silicon-wafer production were investigated. Sintering temperature was fixed at 1,350˚C and the sintered bodies were characterized by SEM and XRD to analyze the microstructure and to measure the apparent porosity, absorptivity, and apparent density. The XRD peak intensity of SiC in the sintered body was increased by adding 5% carbon to the Si/SiC mixture. From this result, it is confirmed that Si in the Si/SiC mixture had reacted with the added carbon. Addition of aluminum hydroxide decreased the cristobalite phase and increased the stable mullite phase. The measurement of the physical properties indicates that adding carbon to the Si/SiC mixture enables us to obtain a dense sintered body that has high apparent density and low absorptivity. The sintered body produced from the Si/SiC mixture with aluminum hydroxide and carbon powder as sintering additives can be applied to diesel particulate filters or to heat storage materials, etc., since it possesses high thermal conductivity, and anticorrosion and antioxidation properties.
        4,000원
        40.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports the microstructures and thermal conductivities of -SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of -x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.
        4,000원
        1 2 3 4 5