검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 555

        401.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of bedding on the microstructure of added with ultra-fine SiC was investigated. The bedding and the addition of ultra-fine SiC effectively inhibited grain growth of matrix grain. The microstructures of the specimens sintered with bedding powder consisted of fine-grains as compared with the specimens sintered without bedding powder. In addition, the grain size and the difference of grain size between the specimens sintered with bedding and without bedding was reduced with increasing SiC content. Some ultra-fine SiC particles were trapped in the grains growed. The number of SiC particles trapped in the grains increased with increasing the grain growth. When ultra-fine SiC particles were added in the ceramics, the strength was improved but the toughness was decreased, which was considered to be resulted from the decrease of the grain size
        4,000원
        402.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders rapidly solidified by the gas atomization method were subjected to mechanical milling(MM). The morphology, microstructure and hardness of the powders were investigated as a function of milling time using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and Vickers microhardness tester. Microstructural evolution in gas-atomized Al-l4wt.%Ni-l4wt.% Mm(Mm=misch metal) alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of decreases during the first 48 hours and then increases up to 72 hours of milling due to cold bonding and subsequently there was continuous refinement to on milling to 200 hours. Two microstructurally different zones, Zone A, which is fine microstructure area and Zone B, which has the structure of the as-solidified powder, were observed. The average thickness of the Zone A layer increased from about 10 to in the powder milled for 24 hours. Increasing the milling time to 72 hours resulted in the formation of a thicker and more uniform Zone A layer, whose thickness increased to about . The TEM micrograph of ball milled powder for 200 hours shows formation of nano-particles, less than 20 nm in size, embedded in an Al matrix.
        4,000원
        403.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hybrid ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about and particles of about in diameter. It also found that fine precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 . Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.
        4,000원
        406.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microstructure plays an important role in controlling the fracture behaviour of carbon-carbon composites and hence their mechanical properties. In the present study effort was made to understand how the different interfaces (fiber/matrix interactions) influence the development of microstructure of the matrix as well as that of carbon fibers as the heat treatment temperature of the carbon-carbon composites is raised. Three different grades of PAN based carbon fibres were selected to offer different surface characteristics. It is observed that in case of high-strength carbon fiber based carbon-carbon composites, not only the matrix microstructure is different but the texture of carbon fiber changes from isotropic to anisotropic after HTT to 2600℃. However, in case of intermediate and high modulus carbon fiber based carbon-carbon composites, the carbon fiber texture remains nearly isotropic at 2600℃ because of relatively weak fiber-matrix interactions.
        4,000원
        408.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.
        4,000원
        413.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and properties of composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of /Ni-Fe alloy were prepared by the solution-chemistry route using , and powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics
        4,000원
        414.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A nitrogen gas atomized aluminum powder was consolidated by powder-in sheath rolling method. A pure aluminum tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. The aluminum tube filled with the aluminum powder, first, was cold-rolled to the thickness of 6mm for performing, and then consolidated by the cold rolling and/or subsequent hot rolling at 360, 460 and . The aluminum powder compact fabricated by the sheath rolling showed high relative density more than 0.96 at any rolling conditions. The 0.2% proof stress increased with increasing hot rolling reduction and hot rolling temperature. Tensile strength was hardly affected by change in the hot rolling reduction, whereas it decreased with increasing hot rolling temperature. The powder compact showed the large elongation when cold rolling or hot rolling reduction was large. It was found that the sheath rolling was an effective method for consolidation of aluminum powder.
        4,000원
        418.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 6061 Al alloy based composites reinforced with 10 vol% SiC whiskers were prepared by powder metallurgy with the powders having the different sizes, i.e. < and> The composites were subjected to equal channel angular pressing (ECAP) at various conditions and the microstructural changes during ECAP were examined In the composites SiC whiskers were clustered and randomly aligned. The clusters were relatively well distributed in the composite with the smaller initial powder size. After ECAP, the clusters were aligned parallel to flow direction and became smaller. In addition, the shape of clusters was changed from irregular to round. The microstructure of the ECAPed samples were compared with those of the conventionally hot-extruded composites. The uniform microstructure and enhanced microhardness could be obtained by using the powders having the smaller size, decreasing ECAP temperature and repeating ECAP.
        4,000원