검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 485

        41.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        천연골재의 부족으로 골재 수급이 날이 갈수록 심각해지면서 재활용 가능한 재료에 대한 사회적 관심이 높아지고 있다. 하지만 국내에서는 선진외국에 비해 순환골재에 대한 연구데이터와 그를 사용한 현장 적용실정이 매우 부족한 실정이다. 본 논문에서는 현장에서 사용하는 레미콘 사의 가이드 배합에 순환골재를 전량 치환하는 배합비를 추출하여 압축강도를 평가하였 고 추출된 배합비의 순환골재 콘크리트를 원형강관 내부에 충전하여 순환골재콘크리트충전 합성기둥이 국내ㆍ국외 설계식을 반 영한 내력과 비교하여 구조부재로써 사용이 적합하다고 사료되는 결과를 얻었다. 또한, 강관의 콘크리트 구속효과로 인해 강관 내부의 콘크리트 강도가 미세하게 증가함을 확인하였다.
        4,000원
        42.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.
        4,000원
        43.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정확도 높고, 실용적으로 손쉽게 사용될 수 있는 온수양생 방법을 표준화하고 이를 통한 콘크리트 압축강도 예측방법을 제시하고자 변수 실험을 진행하였다. 전양생 시간, 온수양생 온도, 온수양생 시간에 대한 변수실험을 통해 18시간 전양생 시간, 70℃ 온수양생 온도, 24시간 온수양생시간의 온수양생시험 표준 조건을 제시하였다. 온수양생시험 표준 조건에 대한 추가적인 배합시험을 통해 콘크리트의 압축강도를 조기에 산정할 수 있는 선형 추정식을 산정하였고, 압축강도 추정식의 높은 신뢰도를 확인하였다. 또한, 혼화재 종류 및 혼화재 치환율 변수에 대한 온수양생시험을 통해 온수양생을 통한 콘크리트 압축강도 조기 추정방법은 시멘트 종류, 혼화재 종류 및 치환율, 골재의 종류가 동일한 배합에 대해서만 그 적용이 가능하다는 결론을 도출하였다.
        4,000원
        45.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근에 국내에는 다양한 원인에 의한 구조물의 안정성을 우려하는 사회적인 관심이 생겼으며 이에 따른 구조물의 보수·보강에 다양한 연구가 진행되고 있다. 우리나라는 4계절이 뚜렷하며 특히 겨울과 봄에는 일교차가 심하게 발생하는 특징이 있다. 이러한 날씨는 철근콘크리트 구조물에게 동결융해작용을 발생시켜 성능저하의 원인이 되며 구조물의 안정성을 위협할 수 있다. 현재 구조물 보수·보강 방법으로는 탄소섬유나 유리섬유로 FRP(Fiber Reinforced Polymer)를 활용하여 Plate나 Sheet 형태의 부착 보강하는 방법이 일반화 되어있다. 하지만 다소 고가이며 유리섬유는 인체에 유해하다는 연구결과가 있다. 때문에 본 연구에서는 친환경적이고 내열성이 우수한 현무암섬유(Basalt Fiber)를 활용하여 동결융해 작용에 의한 콘크리트의 성능저하를 조건으로 BFRP-콘크리트의 부착성능 및 파괴패턴을 비교 분석하였다. 동결융해시험에 따른 부착강도평가는 동일한 섬유와 수지가 함침된 BFRP를 활용하여 동결융해Cycle(0, 100, 200, 300)과 콘크리트 압축강도(24MPa, 30MPa)를 변수로 부착성능을 평가하였으 며 Case1(선 부착 후 동결융해)과 Case2(선 동결융해 후 부착)로 나누어 진행하였다. Case1과 2 모두 콘크리트 파괴의 형태를 보 였으며 Case2의 경우 Case1에 비하여 부착강도가 감소됨을 나타내었고 동결융해 Cycle이 진행될수록 콘크리트 계면의 성능은 저하되고 부착강도는 평균 약 25%정도 감소하는 것을 확인하였다.
        4,000원
        46.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the properties of high-performance concrete and compare them with the properties of ternary blended cement (OPC 60% : BFS 30% : FA 10%) as applied to all-in-one bridge decks. High-performance concrete modified with styrene-butadiene latex (SB latex) was evaluated for strength development and durability through its compressive strength and chloride ion diffusion coefficient. METHODS: The compressive strength test was conducted according to KS F 2405, and the average value of the three specimens was used as the result at each stage. The chloride ion diffusion test was performed at 28 days, 56 days, and 365 days according to NT BUILLD 492. The chloride ion penetration test was conducted according to ASTM C 1202. RESULTS: For the compressive strength of the high-performance concrete, the blast furnace slag 40% replacement (BFS40) mixture had the most similar results to those of the ternary blended cement. The BFS40 mixture exhibited a lower compressive strength at 3 days than the latex modified concrete (LMC) mixture used for the bridge deck pavement, whereas it exhibited a 3.7-9.8% higher compressive strength at 7 days. In addition, the BFS40 mixture had the lowest diffusion coefficient, which was 49.1~59.0% lower than that of the LMC mixture. Mixing with latex tended to decrease in charge passed compared to Plain which is only used ternary blended cement, and showed excellent watertighness (rated “very low”), which is lower than 1,000 coulombs in all mixtures with latex. CONCLUSIONS : The BFS40 mixture exhibited excellent compressive strength, chloride ion permeability resistance, and the lowest chloride ion diffusion coefficient although it included a small amount of latex, which makes it more expensive than the current LMC mixture. It is believed that it is possible to secure excellent economic efficiency and durability by using lesser latex than that in the LMC mixture and using a mixture of the blast furnace slag instead.
        4,000원
        52.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 초고성능 콘크리트의 성능을 보다 향상시키기 위해 현재 콘크리트 보강에 사용하는 섬유들을 조합한 복합 섬유를 제작하여 복합섬유 혼입 초고성능 콘크리트의 강도 특성을 분석하였다. 복합섬유 4종과 단일섬유 3종을 각각 혼입하여 유동성과 압축, 휨강도 실험을 진행하였다. 복합섬유와 단일섬유 혼입 시험체 모두 유동성 평가를 만족하였으며, 단일섬유가 조금 더 우수한 성능을 나타내었다. 강도 평가결과 파라아라미드 섬유와 강섬유를 조합한 복합섬유 2종이 가장 우수한 결과를 나타내었으며, 복합섬유 직경 차이에 따라 압축 및 휨강도 보강효과가 다르게 나타난 것을 확인할 수 있었다. 압축강도 감소를 최소화하며 휨강도를 증가시킨 결과를 통해, 복합섬유는 단일섬유 간의 단점을 서로 보완할 수 있을 것으로 판단되며, 본 연구를 통해 차후 콘크리트의 다양한 재료적 특성을 보강하는 복합섬유도 충분히 제작 가능할 것으로 판단된다.
        4,000원
        53.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, the effects of adding a superabsorbent polymer (SAP) to the concrete mixture on the strength of the concrete and abrasion resistance were analyzed, and whether the property of concrete can be improved by the internal curing effect of SAP was evaluated. METHODS: In this study, a total of eight different mixes were tested. The amounts of SAP added were 0%, 0.6%, 1.2% while that of silica fume were 0% and 6% based on the weight of the binder. The compressive test, rapid chloride penetration resistance test, and abrasion test were performed to verify the internal curing effects of SAP. RESULTS : The compressive test showed that SAP concrete had greater compressive strength than ordinary concrete. Comparison of the compressive strengths of dry and wet cured specimens of each mixture showed that SAP concrete had a smaller difference compared with ordinary concrete. The rapid chloride resistance test showed that SAP did not increase chloride penetration resistance. However, since this experiment only considered wet curing, further investigation of dry curing is necessary. The abrasion resistance test showed that for the case of concrete cured under dry conditions without spraying the curing compound, the abrasion resistance of the SAP concrete improved by approximately 49% at 14 days and 27% at 28 days of curing compared with ordinary concrete. CONCLUSIONS : The effect of SAP on the strength and abrasion resistance of concrete was analyzed. The results showed that the internal curing effect of SAP improved concrete strength and abrasion resistance. The internal curing effect maintains the overall internal humidity in concrete by supplying water held by the SAP to the dried cement paste.
        4,000원
        54.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.
        4,000원
        55.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.
        4,000원
        56.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The main purpose of this study is suggest of field bond strength evaluation method for more objective evaluation method through Evaluation of Bond Strength Properties with changing aspect ratio and temperature. METHODS : The evaluation is laboratory bond strength test. Using the core machine, the pull-off test method ; the bond strength test of interface layer the universal testing machine. RESULTS: As a result of the laboratory bond strength evaluation, it was verified that the bond strength by aspect ratio decreases linearly with increasing aspect ratio and the bond strength properties by temperature change existed at high and low temperature condition relative to odinary temperature condition. CONCLUSIONS: According to the results of laboratory bond strength evaluation, the field bond strength evaluation results suggest applying the proposed correction factor (0.8, 1.0, 1.4, 1.9) according to aspect ratio(0.5, 0.1, 1.5, 2.0), For more objective evaluation of the bond strength, it is analyzed that the evaluation value is within 6 ~ 32℃ and the result can be obtained within 5% of the coefficient of variation.
        4,000원
        57.
        2018.05 구독 인증기관·개인회원 무료
        Fly ash is used as alumina-silicate resource material to reaction processing on geopolymer materials. The strength of material is belonging to alkaline liquid, fly ash, activity reaction of fly ash. Geopolymer concrete as non-toxic, bleed free and high strength material can be used for construction on rigid pavement. Study on influence of polypropylene fiber on performance characteristic of geopolymer concrete is considered. In this research, the mix proportion with fly ash and alkaline liquid is used to react on geopolymer concrete. The poly-propylene fiber in range from 0 to 0.5% by volume is added in mixture of geopolymer concrete. The ratio between length and diameter in range of 100-500 is investigated. The results are indicated that workability of fresh concrete is reduced by using poly-propylene fiber. The adding of poly-propylene fiber is significantly affected on characteristic of geopolymer concrete. Poly-propylene fiber can be distributed in fly ash matrix and reduced shrinkage of concrete during activation. After geopolymerization, compressive and the flexural strength of concrete produced with fibers are enhanced up to 10% and 20%, respectively. However, when the length to diameter ratio increases, compressive strength is tended to decrease with mixture using polypropylene fiber.
        58.
        2018.05 구독 인증기관·개인회원 무료
        Currently, in Korea, the frequent damage of aged concrete pavements causes route blockages due to maintenance and repair works. Ultra-rapid cement has been used as a measure to solve the economic losses which result from traffic delays, accidents, and civil complaints due to blocked routes. However, now, it couldn’t be used except for urgent constructions because the price is expensive and its onsite application is complicated, hence, fast hardening admixtures are being used in ordinary cement to solve the problem with ultra-rapid cement. In this research, it is intended to develop a material which enables early opening of the road being constructed and cured within 24 hours of closure, to secure durability characteristics of early strength concrete by incorporating admixtures (silica fume, latex, polymer powder), and to find optimal mixing ratio and select the optimal variable for each material.
        59.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The contemporary high-tech structures have become enlarged and their functions more diversified. Steel concrete structure and composite material structures are not exceptions. Therefore, there have been on-going studies on fiber reinforcement materials to improve the characteristics of brittleness, bending and tension stress and others, the short-comings of existing concrete. In this study, the purpose is to develop the estimated model with dynamic characteristics following the steel fiber mixture rate and formation ration by using the nerve network in mixed steel fiber reinforced concrete (SFRC). This study took a look at the tendency of studies by collecting and analyzing the data of the advanced studies on SFRC, and facilitated it on the learning data required in the model development. In addition, by applying the diverse nerve network model and various algorithms to develop the optimal nerve network model appropriate to the dynamic characteristics. The accuracy of the developed nerve network model was compared with the experiment data value of other researchers not utilized as the learning data, the experiment data value undertaken in this study, and comparison made with the formulas proposed by the researchers. And, by analyzing the influence of learning data of nerve network model on the estimation result, the sensitivity of the forecasting system on the learning data of the nerve network is analyzed.
        3,000원
        60.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is a well known that concrete is strong for compression and weak for tension. For reinforcing the weakness and improving the performance about concrete, various methods are used. Fiber reinforced concrete that is one of them has been investigated in this study. The function of fiber in concrete is to improve the stress strain relation and toughness, crack control. It’s applied from normal strength concrete to ultra-high performance concrete. But it is essential to disperse fiber uniformly and to prevent aggregation of fiber in concrete, in order that fiber reinforced concrete show the sufficient performance. The various properties of fiber affect the essential properties, for instance, length and diameter of fiber, source, etc. So, this study evaluated the ultra-high performance concrete with mixed in composite fiber.
        4,000원
        1 2 3 4 5