P-type thermoelectric material was sintered by Hot Press process (HP) and the effect of boron ( at%) addition on the thermoelectric properties were reported. To enhance the thermoelectric performances, the , alloys were fabricated by mechanical alloying (MA) and HP. The carrier of p-type SiGe alloy was controlled by B-doping. The effect of sintering condition and thermoelectric properties were investigated. B-doped SiGe alloys exhibited positive seebeck coefficient. The electrical conductivity and thermal conductivity were increased at the small amount of boron content ( at%). However, they were decreased over 0.5 at% boron content. As a result, the small addition of boron improved the Z value. The Z value of 0.5 at% B doped B alloy was , the highest value among the prepared alloys
Due to the increasing use that the stainless steel is getting recently in the nuclear industry, this document proposes the study of the stainless steel 316L with boron addition. With the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties are claimed to unify. The P/M technologies allow adding higher boron quantities than with the solidification conventional technologies, where segregation is produced.
Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by 2000℃ and 2400℃ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at 2000℃ graphitization temperature. However, it was quite at 2400℃ graphitization.
orchardgrass 및 white clover의 단파 및 혼파재배에서 미량요소 붕소(B)의 시비수준별 목초의 생육상, 뿌리/근류 형성, 수량성, 양분의 함량 및 초종간 경합지수 등에 미치는 영향 등을 구명하였다. 처리내용은 다량 및 미량요소 시비를 동일하게 한 조건에서 5 수준의 붕소 처리: 1) ; 0.0, 2) ; 0.2, 3) ; 2.0. 4) ; 6.0, 5) ; 15.0me B/pot로 glasshouse에서 pot시험으로 수행하였다. I보
Orchardgrass 및 white clover의 단파 및 혼파재배에서 미량요소 붕소(B)의 시비수준별 목초의 가시적 생육상, 뿌리/근류 형성, 수량성, 영양성분/무기양분 및 초종간 경합지수 등에 미치는 영향을 구명하였다. 처리내용은 다양 및 미량요소 시비를 동일하게 한 조건에서 5 수준의 붕소 처리: 1) ; 0.0, 2) ; 0.2, 3); 2.0. 4) ; 6.0, 5) ; 15.0me B/pot로 하였으며, glasshouse에서 pot시험으로
Orchardgrass 및 white clover의 단파 및 혼파재배에서 미량요소 붕소(B)의 시비수준별 목초의 생육상, 뿌리/근류 형성, 수량성, 영양성분/무기양분의 함량 및 초종간 경합지수 등에 미치는 영향을 구명하였다. 처리내용은 다양 및 미량요소 시비를 동일하게 한 조건에서 5 수준의 붕소 처리: 1) ; 0.0, 2) ; 0.2, 3) ; 2.0. 4) ; 6.0, 5) B; 15.0me B/pot로 glasshouse에서 시험으로 수행하였다.
The microstructure and mechanical properties of nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing powders covered with turbostratic BN (t-BN). The t-BN coating on particles was prepared by heating particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the microcomposites.
고 에너지 (1.5 MeV) 이온 주입된 Boron의 농도와 silicon 기판의 초기 산소 농도의 변화에 따라 silicon기판에 형성된 결정 결함 및 금속 불순물의 Gettering 효율에 대하여 DLTS(Deep Level Transient Spectroscopy), SIMS(Secondary ion Mass Spectroscopy), BMD(Bulk Micro-Defect) analysis 및 TEM (Transmission Electron Microscopy)을 이용하여 연구하였다. 이온 주입 전후의 DLTS 결과를 확산로 및 RTA를 이용한 열처리 전후의 DLTS 결과와 비교할 때 이온 주입 전 시편에서 볼 수 있는 공공에 의한 깊은 준위는 열처리 온도의 증가에 따라 금속 불순물과 관련된 깊은 준위로 천이함을 알 수 있다. 또한 고온 열처리의 경우, 초기 산소 농도가 높을수록 깊은 준위의 농도가 감소함을 볼 때 초기 산소 농도가 높을 수록 gettering 효율 측면에서 유리한 것으로 사료된다
This paper describes the mechanical properties and oxidation resistance of carbon fibers with and without additions of boron oxide additives, and describes the changes in the properties resulting from increased heat treatment temperature (HTT) of the fibers. Carbon fibers in this experiment were heat treated up to 2800℃ each with and without boron oxide treated on the surface of fibers. In the case of boron oxide added carbon fibers, they do not show the improvement of tensile strength and modulus compared to those of no treated carbon fibers below 2200℃ since they are doped substitutionally with boron above 2600℃, which accelerate the graphitization of carbon fibers. Boron oxide implanted carbon fibers showed high resistance to oxidation, however, when carbon fibers were heat treated below 2200℃, they showed almost the same trend of air oxidation.