검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 409

        61.
        2022.05 구독 인증기관·개인회원 무료
        The Na, Al, and Si akoxides-based sorbents for iodine capture have higher maximum iodine capture capacity and pore properties than zeolite-based sorbents. However, these sorbents were prepared in the form of granules via a step for cutting cylindrical alcogels. Since as-made sorbents decreased packing density, they must be additionally crushed and then classified into an appropriate size for increasing packing density. The bead formation in the step of sol-gelation could bring about the simplification of sorbent fabrication process and an improvement of packing density. For the formation of gel bead, characteristics such as hydrophilic or hydrophobic property and density of sol solution were investigated to design sol-gelation equipment. The sol-gel bead preparation equipment in the reflection of sol solution characteristics was fabricated through selection of oil for formation of sol bead, solvent for collection of gel bead, and nozzle for spray of sol droplet formation. The continuous or discontinuous formation of sol beads from NaAlSi-OH sol solution were observed according to flow rates of 6 to 8 mL·min−1 and nozzle diameters of 0.4 to 0.8 mm. In the sphericity of sol bead, the best sol beads were obtained from 0.5 mm nozzle without clogging by sol solution in the flow rate range of 6–8·min−1.
        62.
        2022.05 구독 인증기관·개인회원 무료
        One of the options for spent fuel dry storage systems is to store them in canisters using metal or concrete casks close to shore. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. A canister made of austenitic stainless steel has several welding lines on the wall and lid, which are generated during the welding process and have high residual tensile stress. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. In order to evaluate such soundness, an accelerated test capable of simulating the CISCC crack propagation phenomenon of the canister weld is required. In this study, the current status of CISCC simulation tests performed around the world to build a test equipment for the CISCC simulation accelerated test is investigated, and based on this, the test conditions suitable for the simulation test and specimen specifications are selected to establish the test equipment. The settings were performed. In consideration of the set device requirements, the essential limiting conditions for device manufacturing were derived, and detailed design was performed to satisfy them, and it was used to build a CISCC simulation test device for welding parts. The CISCC simulation test equipment requires performance to maintain the test temperature range of room temperature to 80°C and humidity 35 to 95%. In addition, it should be manufactured in consideration of humidity and temperature maintenance in the chamber of the complex corrosion tester, measures to prevent leakage of the connection part between the chamber and the salt water tank of the complex corrosion tester, and measures to supply stable salt water and maintain temperature in the salt water tank. Based on these contents, detailed specifications and design contents of the chloride stress corrosion cracking simulation test apparatus were presented in this study.
        63.
        2022.05 구독 인증기관·개인회원 무료
        The temperature of the spent fuel cladding is the basis for the evaluation of integrity. It is almost impossible to directly measure the temperature of spent nuclear fuel. Because spent nuclear fuel is dangerous. We are preparing a test to measure the cladding temperature with an equivalent fuel assembly by simulating the characteristics of spent nuclear fuel. PLUS7 was selected as the test target in consideration of the amount of generation, thermal water retention, residual moisture content, and manufacturability of domestic spent nuclear fuel. The nuclear fuel assembly is planned to be manufactured in two main ways. Except for the cladding tube that simulates decay heat, the structure will be manufactured by KEPCO Nuclear Fuel, and fuel rods and canisters will be manufactured by SUKEGAWA Electric in Japan. The same nuclear fuel assemblies as commercial skeleton will be applied. The temperature of the fuel cladding will be measured by attaching a thermocouple directly to the surface of the cladding tube. The canister is composed of a basket, a basket supporter, a heater and drain tube, a lead, and an observation window. The working fluid is water and helium, and the maximum pressure inside the canister is 1.1 MPa and the minimum pressure is 0.05 kPa. The maximum temperature of the surface of the cladding was designed to be 500°C, and the maximum temperature of the sealing to keep airtightness was designed to be 250°C. To satisfy this condition, we plan to evaluate the leak rate below 10−5 std.cm3·s−1, which is equivalent to helium tightness. The maximum heat of decay per fuel rod is 13 W, and one assembly is up to 3 kW. Production of the test equipment is expected to be completed in the first half of next year, and testing is scheduled to begin in the second half of next year. The test will evaluate all environments that the spent nuclear fuel may experience, such as dry normal conditions, abnormal conditions, wet conditions, and dry conditions. All data will be used for interpretation verification purposes.
        65.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, a driving simulation testing equipment was developed to derive the optimal longitudinal tinting that can reduce the lateral vibration of the vehicle. Various types of longitudinal textures and tires were evaluated through simulation testing with the equipment. Based on the results, 3×3×16mm tinning as the optimal longitudinal texture was selected among 8 textures. METHODS : Based on the literature review, the causes of lateral vibration were analyzed, and parts and types for testing equipment development were reviewed. Driving simulation with testing equipment was conducted considering various textures and tires. To verify the test results, finite element analysis was performed under the similar conditions. And field test for two textures was conducted to find the optimal longitudinal texture. RESULTS : Based on the literature review, driving simulation test, finite element analysis and field test, longitudinal texture of 3×3×16mm is show the better performance compared to 7 textures. CONCLUSIONS : 3×3×16mm as longitudinal tinning for fresh concrete is show less lateral vibration than 3×3×12mm.
        4,000원
        66.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.
        4,000원
        67.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
        4,000원
        68.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to find out the management and sanitation status of protective gear provided at the construction site, a case study and survey were conducted by visiting the site. As a result of the case study, inspection and management, disinfection, and storage of protective equipment were insufficient in both workplaces with less than 50 employees and workplaces with more than 100 employees. As a result of the survey, workers(66.2%), said they did not know how to identify hard hats(67.6.%), how to identify bad hard hats(60.8%), and how to identify bad safety belts (73.0%), even though workers(66.2%) were educated on protective gear, and those in charge of protective gear Non-specified(56.8%), regular inspection of the provided protective equipment was not performed(82.4%), and disinfection was not performed(90.5%). Therefore, as a management plan to maintain the performance of personal protective equipment, educational aspects, regular training on protective equipment, training on how to identify defective protective equipment, management of recording papers, technical aspects, strengthening of standards for placement of dedicated safety managers in small workplaces, participation of workers’ representatives when selecting protective equipment, and selection of protective equipment for workers Providing opportunities, administrative aspects of protective equipment regulation and management, introduction of sanitary and cleanliness system, and selection of personnel in charge of protective equipment management were suggested.
        4,000원
        69.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: Personal protective equipment (PPE) is critical for protecting healthcare workers from COVID-19 outbreaks. Therefore, this study examined the effects of a nursing simulation education program on PPE use for COVID-19 among nursing students. Methods: We employed a non-equivalent control group post-test design. The experimental group (n=38) engaged in a nursing simulation education program on PPE use. The control group (n=36) received PPE and the opportunity to participate in the same program after the intervention. Further, data were analyzed using descriptive statistics and independent t-test. Results: The experimental group showed significant differences in attitude toward PPE (t=3.21, p=.002) and efficacy of PPE use (t=9.92, p<.001), but not in the intention to care for patients with COVID-19 (t=0.95, p=.343). Conclusion: Nursing simulation education for PPE significantly improved attitude and increased self-efficacy toward PPE among nursing students. However, the intention to care for COVID-19 patients was not changed. Thus, it is necessary to find a way to improve the nursing intention toward COVID-19 patients.
        4,600원
        70.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.
        4,000원
        80.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The strengthening of environmental regulations has raised interest in alternative energy and electric car. Secondary batteries are such energy storage device, and in this study, a secondary batteries production equipment parts will be manufactured. To this end, molds were designed and manufactured using numerical analysis. The reliability of analysis is to be confirmed through tensile tests and X-ray tests of products cast with manufactured molds. As the results of the casting method design parts was obtained as the average ultimate tensile strength of 178.23N/mm2, 173.85N/mm2 was recorded and good test results were achieved. It is considered that aluminum alloy research and heat treatment technology development should be carried out in the future.
        4,000원
        1 2 3 4 5