검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 143

        81.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).
        4,000원
        82.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag-Cu alloy nano powders were fabricated by the electrical explosion of Cu-plated Ag wires. Ag wires of 0.2mm diameter was electroplated to final diameter of 0.220 mm and 0.307 mm which correspond to Ag-27Cu and Ag-68Cu alloy. The explosion product consisted of equilibrium phases of and -Cu. The particle size of Ag-Cu nano powders were 44 nm and 70 nm for 0.220 mm and 0.307 mm wires, respectively. The Ag-Cu nano powders contained less Cu than average value due to higher sublimation energy compared to that of Ag. As a result, micron-sized spherical particles formed from liquid droplets contained higher Cu content.
        4,000원
        83.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper analyses the effect of parameters on the consequences of the unconfined vapor cloud explosion accident (UVCE) by the release of heavy gas (xylene vapor). Simulation results showed that the overpresure was increased with the increase of the release hole diameter and with the decrease of the interested distance and the wind speed. While, the overpresure was not nearly affected by the release height, weather and environmental conditions. From the results of the consequence analysis and analysis of affecting the consequences of UVCE, the emergency plan should be established taking into account these parameters.
        4,000원
        86.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.
        4,000원
        87.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of phases while those from electroplated wires contained additional Zn-rich phases as , and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.
        4,000원
        88.
        2006.11 구독 인증기관 무료, 개인회원 유료
        Since 1990's, many enterprises have implemented ERP System. Especially, they want to become an advanced company use ERP implementation. Already, ERP system come to high level which is stabilized and support independent business process of many industry sectors. Although most companies had previous good plans, but those are not satisfied. Because of failed to change management and had many problem about Project team operation. Therefore, important success factors for ERP project are change management and organization activation for Project team. The purpose of this study is suggest to improve method about team activation through analysis the Project team member's individual personality as a factor that makes the success of Project team. This paper studied success factors of project team and plan for organization activation. The results of this study can be used for a successful implementation of the ERP system as make of Project team consider of individual personality and administer a Project team.
        4,000원
        89.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ] oxide layer on the surface of each W(tungsten) nanopowder produced by the electric explosion of wire(EEW) process were formed during the 1vol.% air passivation process. The oxide layer hindered sintering densification of compacts during SPS process. The oxide phase was reduced to the pure W phase during SPS. The W nanopowder's compacts treated by the hydrogen reduction showed high sintered density of 94.5%. after SPS process at .
        4,000원
        90.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 지구계 교육을 통하여 과학을 공부하는 10학년의 학생들에게 도움이 되고자 하는 것이다. 지구계 교육은 과학 교과 간 구분을 완화하고 조화로운 교수-학습을 이루어감으로써 올바른 자연관과 인간관 육성에 기여할 것이다. 본 연구에서는 지구계 교육 프로그램 중 '화산 폭발과 기후 변화(Volcanic Eruptions and Global Climate Change)'라는 주제를 선정하고 이를 7차 교육 과정의 '과학' 교과에 적합하도록 수정, 보완하여 그 적용가능성을 점검해 보았다. 그 결과 과학에 대한 인식(p=0.003), 과학에 대한 흥미(p〈0.001), 과학적 태도(p〈0.001) 등의 과학에 대한 태도의 변화에 있어서 실험 집단이 통제 집단에 비해 거의 모든 영역에서 긍정적 변화를 보였다. 학업 성취도면에서는 지구계 교육 프로그램을 적용한 실험 집단이 전통적 수업을 진행한 통제 집단보다 높은 학업 성취도를 보였다(p=0.038). 실험 집단의 학생들은 적극적이고 진지한 태도로 수업에 임했으며 자기 주도적으로 학습하였다. 이러한 결과를 토대로 과학 교과에 지구계 교육 프로그램의 적용은 학생들의 과학적 흥미와 호기심 고양 및 과학적 소질과 올바른 자연관 신장에 좋은 영향을 줄 것으로 기대할 수 있다.
        4,000원
        91.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and were the major phases. As the Cu layer becomes thicker, Al diminished while phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.
        4,000원
        92.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the June, 1991, there was the explosion in which methanol rectified column as a part of the new surface active agent's manufacturing processes. The type of explosion was estimated as the 'detonation'. The methanol rectified column was ruined, and broken pieces of the column were scattered within 900m. Also, there were victims such as the two deads and thirteen wounded persons. The cause of the explosion was heat explosion by being concentrated locally from 0.1% to several tens% of supply fluid at Metal Hydroperoxide, which was produced by methanol and hydrogen peroxide used as the bleach of surface active agent, during the operation stoppage process of methanol rectified column.
        4,800원
        96.
        2005.05 구독 인증기관 무료, 개인회원 유료
        1991년 6월 신규 계면활성제 [a-SF]의 제조 공정의 하나인 메탄올 정류탑에 있어서 폭발사고가 발생했다. 폭발 형태는『폭굉』 이였다 라고 판단되어지고 정류탑은 대파되었으며 탑벽 파편은 대강 900m 범위로 비산되었고 사망자 2명, 부상자 13명의 피해를 입었다. 원인물질은 계면활성제의 표백으로 사용하는 메탄올과 과산화수소에 의해 미량 생성한 유기과산화물(Metal Hydroperoxide)에서 정류탑의 운전정지과정 중에 공급액의 부터 수십까지 국부적으로 농축되어져 열 폭발을 일으킨 것으로 추정 되어진다.
        5,100원
        98.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear
        3,000원
        99.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The possibility to decrease agglomeration of Cu nano powders and their separation during pulsed wire evaporation (PWE) process was investigated by controlling the working gas system, i.e., the design of the gas path, the type and pressure of the atmospheric gas. As a result, it was possible to choose the optimal design of the gas path providing large specific surface area and high degree of separation of the synthesized Cu nano powders. It was also shown that an Ar+10∼50 mixture can be used in production of Cu nano powders, which do not react with nitrogen.
        4,000원
        100.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study the possibility to obtain a homogeneous mixture and to produce solid solutions and intermetallic compounds of Fe and Al nano particles by simultaneous pulsed wire evaporation (S-PWE) have been investigated. The Fe and Al wires with 0.45 mm in diameter and 35 mm in length were continuously co-fed by a special mechanism to the explosion chamber and simultaneously exploded. The characteristics, e.g., phase composition, particle shape, and specific surface area of Fe-Al nano powders have been analyzed. The synthesized powders, beside for Al and -Fe, contain significant amount of a high-temperature phase of -Fe, Fe Al and traces of other intermetallics. The phase composition of powders could be changed over broad limits by varying initial explosion conditions, e.g. wire distance, input energy, for parallel wires of different metals. The yield of the nano powder is as large as 40 wt % and the powder may include up to 46 wt % FeAl as an intermetallic compound.
        4,000원
        1 2 3 4 5