본 연구에서는 대파의 가락시장 도매가격을 이용하여 기존 시계열 모형인 ARIMA 모형, 홀트-윈터스 평활법과 대표적인 기계학습 방법인 랜덤 포레스트(Random forest) 분석 기법의 가격 예측력을 비교하였다. 세 모형의 예측력을 분석한 결과는 다음과 같다. 가장 예측력이 높게 나타난 모형은 3년(36개월)을 주기로 설정한 ARIMA 모형이었다. 또한 ARIMA 모형과 홀트-윈터스 평활법은 일별 데이터보다 월별 데이터를 이용한 예측 결과의 정확도가 더 높아 훈련 데이터에 대한 과적합(overfitting)이 오히려 예측력을 낮추는 현상을 보였다. 반면, 랜덤 포레스트는 월별 데이터 보다 일별 데이터를 사용한 모형의 예측력이 더 높았다. 이는 학습량이 많을수록 높은 예측력을 보여주는 기계학습의 특징을 보여주었다. 그러나 기계학습 방법을 활용한 가격 예측에는 가격에 영향을 주는 설명변수를 찾고, 양질의 훈련 데이터 축적이 필요하다는 것을 알 수 있었다. 향후 연구에서는 다양한 설명변수와 기계학습 및 딥러닝 기법을 적용한다면 농축산물 가격 예측력을 높이는데 도움이 될 것으로 판단된다.
The purpose of this study is to compare short-term price predictive power among ARMA ARMAX and VAR forecasting models based on the MDM test using monthly consumer price data of frozen mackerel. This study also aims to help policymakers and economic actors make reasonable choices in the market on monthly consumer price of frozen mackerel. To analyze this study, the frozen wholesale prices and new consumer prices were used as variables while the price time series data were used from December 2013 to July 2021. Through the unit root test, it was confirmed that the time series variables employed in the models were stable while the level variables were used for analysis. As a result of conducting information standards and Granger causality tests, it was found that the wholesale prices and fresh consumer prices from the previous month have affected the frozen consumer prices. Then, the model with the highest predictive power was selected by RMSE, RMSPE, MAE, MAPE, and Theil’s inequality coefficient criteria where the predictive power was compared by the MDM test in order to examine which model is superior. As a result of the analysis, ARMAX(1,1) with the frozen wholesale, ARMAX(1,1) with the fresh consumer model and VAR model were selected. Through the five criteria and MDM tests, the VAR model was selected as the superior model in predicting the monthly consumer price of frozen mackerel.
표고버섯 재배 임가들이 생산량과 출하 시기를 결정하는 데 가격은 결정적인 역할을 하지만, 표고버 섯 가격 전망에 대한 연구는 미진한 상황이다. 이 연구의 목적은 표고버섯의 중품, 상품, 특품의 월별 가격자료를 이용하여 시계열 분석 모형을 구축하고, 이들의 단기 가격 예측력을 비교하는 것이다. 이를 위해, 2002∼2015년 동안의 등급별 가락시장 표고버섯 가격자료를 이용하여 Seasonal Exponential Smoothing 모델, Seasonal ARIMA with intercept 모델, Seasonal ARIMA without intercept 모델, Seasonal Dummy 모델을 포함하는 네가지 형태의 시계열 분석 모형을 구축하고 단기 가격을 예측하였 다. 또 통계적 검증방법을 이용하여 이들 모델의 가격 예측력을 비교하였다. 분석 결과, Seasonal ARIMA without intercept 모형의 가격 예측 능력이 가장 우수한 것으로 나타났다. 향후 다른 단기 소 득 임산물의 가격 예측에도 이들 모델을 적용함으로써 임가들의 생산 출하에 대한 의사결정에 유용한 정보를 제공할 수 있을 것이다.
Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using statistical tools like ARIMA and their business indices. And for examples, Indium and Coal were introduced.
Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using ARIMA and their business indices. And for examples, Indium and Coal were introduced.
Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.
Purpose – The purpose of this study examines when the optimism impact on financial asset price forecasting and the boundary condition of optimism in the financial asset price forecasting. People generally tend to optimistically forecast their future. Optimism is a nature of human beings and optimistic forecasting observed in daily life. But is it always observed in financial asset price forecasting? In this study, two factors were focused on considering whether the optimism that people have applied to predicting future performance of financial investment products (e.g., mutual fund). First, this study examined whether the degree of optimism varied depending on the direction of the prior price trend. Second, this study examined whether the degree of optimism varied according to the forecast period by dividing the future forecasted by people into three time horizon based on forecast period.
Research design, data, and methodology – 2 (prior price trend: rising-up trend vs falling-down trend) x 3 (forecast time horizon: short term vs medium term vs long term) experimental design was used. Prior price trend was used between subject and forecast time horizon was used within subject design. 169 undergraduate students participated in the experiment. χ2 analysis was used. In this study, prior price trend divided into two types: rising-up trend versus falling-down trend. Forecast time horizon divided into three types: short term (after one month), medium term (after one year), and long term (after five years).
Results – Optimistic price forecasting and boundary condition was found. Participants who were exposed to falling-down trend did not make optimistic predictions in the short term, but over time they tended to be more optimistic about the future in the medium term and long term. However, participants who were exposed to rising-up trend were over-optimistic in the short term, but over time, less optimistic in the medium and long term. Optimistic price forecasting was found when participants forecasted in the long term. Exposure to prior price trends (rising-up trend vs falling-down trend) was a boundary condition of optimistic price forecasting.
Conclusions – The results indicated that individuals were more likely to be impacted by prior price tends in the short term time horizon, while being optimistic in the long term time horizon.
한국은 2050년까지 주요 선진국 중에서 고령화가 가장 심각한 사회로 전환되게 될 것으로 예상된다. 기대여명의 증가와 저 출산은 고령화를 더욱 악화시키며, 이는 심각한 사회문제로 발전하게 될 것이다. 이와 같은 문제를 해결하기 위해 한국정부는 2008년에 도시지역에는 주택연금제도를 도입하였으며, 2011년에는 세계 최초로 농촌지역을 대상으로 농지연금제도를 도입하였다. 그렇지만 이와 같은 제도는 설계 당시부터 복지상품이라기 보다는 장기적으로 손실과 수익의 균형에 초점을 둔 금융상품으로 개발되어 실질적으로 노인들에게 크게 인기를 얻지 못하였다. 따라서 본 연구는 농지연금제도를 활성화시켜, 농촌노인들에게 보다 더 많은 혜택을 주기 위해 지역 토지시장을 감안하여 지역별 농지가격상승률을 예측하고 연금액을 산출하였다. 또, 지금까지 사용한 년 혹은 분기별 감정가 대신에 월별, 지역별 실거래 가격을 모형에 적용하여 지역 토지시장, 고령화 수준 등 지역 여건에 부합하는 연금액을 산출하였다. 할인율자료도 가장 안정적인 3년 만기 국고채 수익률을 활용하여 미래농지가격을 예측하고, 이를 유동화하여 월 생활자금으로 지급되도록 하였다. 특히 농지규모가 가장 많고, 고령화 정도가 심각하여 농지연금의 잠재적 수요가 가장 높을 것으로 예상되는 경상북도와 전라남도를 사례지역으로 선정하고, 이를 전국평균과 비교하여 지역적인 차이도 함께 분석하였다. 이를 위해 농지가격 및 이자율 시계열 자료의 안정성을 검정하고, 장기농지가격을 예측하였다. 이를 활용하여 경북, 전남, 전국의 노인들의 월평균 지급액을 추정하였다. 분석결과 정책의 잠재적 수요가 가장 높은 두 지역이 가장 낮은 금액이 지급되는 것으로 추정되어 이는 또 다른 지역불균형을 초래할 수 있는 것으로 평가되었다.
In this study the effect caused by limited storage lift of agricultural products for determining shipping amount can be analyzed by lst order autoregressive model based on cobweb theorem. Carrying capacity and auction price of upland-grown cabbage and garlic from 2000 to 2003 in wholesale markets were used for analysis. In result regression models of cabbage can not be used in verification periods although those of garlic approximately predicted shipping amounts in verification periods. It can be inferred that it is hard to control shipping amounts depending on price fluctuation for agricultural products which have limited storage life so cultivated areas and meteorological risk should be managed for stable price.