The rapid urbanization and industrial growth have increased the demand in construction, maintenance, and infrastructure, leading to significant advancements in aerial work vehicle technology. This study focuses on the structural performance of ultra-high-strength steel plates of varying thicknesses used in telescopic booms, which is a critical component of aerial work vehicles. This study aims to address the cost issues associated with the previously used 5mm thick plates by evaluating the structural integrity of thinner plates. Using finite element analysis (FEA), the study analyzes stress and displacement for different thicknesses, specifically targeting the first boom segment, which bears the most load. The results indicate that while 3mm and 3.2mm thick plates are unsuitable due to buckling, the 4mm thick plate meets safety criteria with a safety factor of 2.51 and reduces costs by over 20%. By using 4mm thick ultra-high-strength steel for the first boom segment is cost-effective, providing structural integrity and an applicable solution for aerial work vehicle manufacturers.
Aerial work platform truck is used in various ways depending on the surrounding environment, of city roads, farming areas, and industrial sites. Air flow, drag force and torque in surroundig the flow field of AWP have been analyzed with CFD method. The overall air flow rate decreases as the AWP passes and increases between the vehicle and the boom, at the boom connections, and at the bottom of the work platform. The drag force and torque on the boom, workspace, and the combined boom and workspace are largely affected by air flow velocity. The boom's drag and torque are approximately 2.2 and 1.3 times greater than those of the work platform, respectively. These predicted results can be widely applied as basic conceptual design data for highly efficient aerial work platform truck.
Since electric energy is used in industry, mass production and various conveniences are provided. To provide convenience for the construction and operation of such electric energy transmission and distribution facilities, it is increasing that the demand for special purpose vehicles, that is, telescopic aerial work platform vehicles. When working active electric work using the telescopic aerial work platform vehicles, due to active electric work is inevitable, it is essential to ensure insulation performance for the safety of the operator. In this paper, we study the design and development of mechanical properties for filament winding process of glassfiber/epoxy composite, it is required to boom of telescopic aerial work platform vehicles. The glass fiber/epoxy composite filament winding process and its mechanical properties were evaluated to replace the existing ATOS80 boom. By filament winding process it was obtained the mechanical properties required for the design analysis of the glass fiber/epoxy composite boom. Using this, the insulated boom for the 30m class aerial work vehicle was designed and was manufactured by applying the filament winding process. The fabricated composite boom was evaluated by the static strength test to meet the required strength. The maximum displacement was 84mm and the crack occurred at the maximum load of 8981N. It satisfied the maximum lifting load of 4900N and 210mm the maximum displacement required for the boom.
Due to rapid industrialization and urbanization, maintenance of high voltage transmission lines in narrow alleys, complex roads, or old factory areas is required. Since the existing aerial lift vehicle is made of steel, there is a risk of electric shock. Therefore, there is a need for the development of an insulated aerial lift vehicle that can prevent electric shock accidents during electrical work. In particular, the development of an insulated aerial lift vehicle is required in a recent work environment where live line work is inevitable. The development of composite insulation boom for the vertical swing type aerial lift vehicle is studied. The insulated boom was developed by applying glass fiber-epoxy composite and filament winding process. The developed insulated boom was verified by measuring dielectric breakdown strength, surface resistance and volume resistance according to ASTM D149 and ASTM D257.
The aim of this paper is to clarify the structural stability of 30m fly(maximum working radius of 30m) and telescopic boom with composition. In order to reduce the weight and insulate, the boom of special vehicle has a 3-stage telescopic boom of DOMEX960, pocket part of acetal, 2-stage refracting boom of ATOS80, insulation boom of glass fiber composition and effector. In this process, CATIA is applied to create 3D modeling, then ANSYS are performed the structural analysis. The structural analysis is performed for a case where the thickness of the insulating boom of the ATOS 80 is 7[㎜] and the thickness of the insulating boom of the FRP material is 15[㎜] and 16[㎜].
The findings were summarized as follows. The safety check by manufacturer showed that 6 of 13 companies are over the average occurrence of defects. It was expected that there would be a difference between manufacturing technology capability and production system of each manufacturer. Consequently, manufacturers should institutionally improve and strengthen certification items for the upward standardization of safety certification before factory. Second, the safety check by year showed that the results of this study accord with those of previous studies on defect time. Consequently, manufacturers should classify the 3-year-old equipment for vehicle-mounted MEWP into a special check subject to do a nondestructive test according to proven results, and also reflect the test in a safety test system to do regular preventive activities of equipment defects. Third, the safety check by part showed that the boom and outrigger parts of vehicle-mounted MEWP have the most defects. Stress concentration resulted in defects as the boom part was most frequently operated in the structural parts for a real work. To prevent this, it is suitable to improve the hardness of boom materials. The outrigger part needs improvement in safety devices with materials. As an outrigger supports the overturning moment of equipment, it is most affected by its load based on the operating radius, resulting in fatigue crack.
As contemporary building construction type is getting higher and deeper, construction equipment usage is getting more, and related fatal accidents are on an increasing trend. Because of this, a method was drawn which could grasp the present state of construction equipment management and manage safety of the equipment more easily for accident prevention by choosing 2 kinds of Construction equipment which cause safety accident frequently among the equipment mainly used in construction site. This study suggested a method about construction equipment safety management using "smart phone" base which could be used in safety management for construction equipment by whomever in construction site. After attachment of QR code included safety checklist, It became possible that site managers could check more efficiently by scanning with their smart phone when they inspect equipment. Moreover, by the construction interested who didn't know what and how they have to inspect could point out unsafe condition in the early stage of equipment entering or take unsafe one out of the site by using new smart phone safety checking system is installed, it became possible that critical accident caused by construction equipment was prevented in advance.