Velvet antler is widely used as a traditional medicine, and numerous studies have demonstrated its tremendous nutritional and medicinal values including immunity-enhancing effects. This study aimed to investigate different deer velvet extracts (Sample 1: raw extract, Sample 2: dried extract, and Sample 3: freeze-dried extract) for proximate composition, uronic acid, sulfated glycosaminoglycan, sialic acid, collagen levels, and chemical components using ultra-performance liquid chromatography-quadrupole-time-of-light mass spectrometry. In addition, we evaluated the cytotoxic effect of the deer velvet extracts on BV2 microglia, HT22 hippocampal cells, HaCaT keratinocytes, and RAW264.7 macrophages using the cell viability MTT assay. Furthermore, we evaluated acute toxicity of the deer velvet extracts at different doses (0, 500, 1000, and 2000 mg/kg) administered orally to both male and female ICR mice for 14 d (five mice per group). After treatment, we evaluated general toxicity, survival rate, body weight changes, mortality, clinical signs, and necropsy findings in the experimental mice based on OECD guidelines. The results suggested that in vitro treatment with the evaluated extracts had no cytotoxic effect in HaCaT keratinocytes cells, whereas Sample-2 had a cytotoxic effect at 500 and 1000 μg/mL on HT22 hippocampal cells and RAW264.7 macrophages. Sample 3 was also cytotoxic at concentrations of 500 and 1000 μg/mL to RAW264.7 and BV2 microglial cells. However, the mice treated in vivo with the velvet extracts at doses of 500–2000 mg/kg BW showed no clinical signs, mortality, or necropsy findings, indicating that the LD50 is higher than this dosage. These findings indicate that there were no toxicological abnormalities connected with the deer velvet extract treatment in mice. However, further human and animal studies are needed before sufficient safety information is available to justify its use in humans.
The present study was carried out to investigate the acute oral toxicity of Chamaecyparis obtusa (C. obtusa) essential oil in ICR male and female mice. Acute oral treatment with C. obtusa essential oil did not reveal any sign of toxicity or mortality in treated mice. Mouse body weights were not affected after single oral administration of C. obtusa essential oil during the 14-day observation period. In the hematological and blood biochemical analysis, all parameters of the treated group with 2,000 mg/kg body weight of the essential oil were not significantly different those of the control group. Therefore, the lethal dose 50 of the essential oil was estimated to be greater than 2,000 mg/ kg body weight in mice, which indicated that the essential oil is non-toxic. In conclusion, this study suggests that C. obtusa essential oil orally safe ICR mice.
This study was designed to evaluate to acute oral toxicity and skin irritation of Chrysanthemum dye in Sprague-Dawley (SD) rats. SD rats were orally treated with Chrysanthemum dye at a dose of 0, 1 and 2 ml/kg body weight. After oral administration, the rats were observed for 14days. In primary skin irritation test, SD rats were dermally treated with Chrysanthemum dye and observed for 3 days. To ensure the safety of Chrysanthemum dye such as the following were observed and tested. We examined the body weight, the feed intake, the clinical signs, the ophthalmological test, the histopathological test, the mortality and skin irritation. As a result, no significant differences were found in body weight, feed intake and histopathological test between control and Chrysanthemum dye treated group. In the result of skin irritation test, Chrysanthemum dye did not induce erythema and edema after topical application. Primary irritation index was “0” in the test. Therefore, it is suggested that Chrysanthemum dye has no effect on acute toxicity and side effect in SD rats and is non-irritant material based on the score “0” of primary irritation index.
This test was performed to evaluate the acute oral toxicity and skin irritation of Lamia-Kill®, disinfectant,containing 20% benzalkonium chloride and 10% citric acid. In acute oral toxicity, Lamia-Kill® was orally administered at dose levels of 2,000, 1,000, 500, 250 and 0 mg/kg body weight. After single oral administration to both sexes of SD rats, the rats were observed for 14 days. In primary skin irritation test, New Zealand white rabbits were dermally treated with Lamia-Kill® for 24 hr and observed for 3 days. All rats treated with Lamia-Kill® were induced no toxic signs in mortalities, clinical findings, body weights and gross findings. Also, the disinfectant did not induce any adverse reactions such as erythema and edema on intact skin sites for the most part rabbits, but on abraded skin sites, some rabbits showed very slight erythema on 24 hr after topical application. With the results of this study,Lamia-Kill® have no effect on acute toxicity and side effect in SD rats and was classified as a practically non-irritating material based on the score 0.50 of primary irritation index.
The subacute toxicity of xylooligosaccharide (XO) was evaluated in SD rats. Groups of 60 male and 60 female rats were orally administered with 0, 333, 1000 or 3000 mg/kg of XO for 13 weeks. The changes of body weight, food and water consumption were investigated for 17 weeks, while heamatological values and histopathological findings were investigated at the end of the 13 weeks and 17 weeks including 4 weeks of recovery periods. No death and toxic effects were observed during the test periods. There were statistically significant changes in several parameters, but these change had no direct relationship to dosage. Clinical changes were general occurrence and no specific toxicity was related to XO. Gross necropsy and histopathology revealed that no target organs were found in the treated mouse with XO. According to the results, no-observed effect level of XO is estimated to be above 3000 mg/kg.
The acute toxicity of xylooligosaccharide(XO) was evaluated in SD rats. Groups of 15 male and 15 female rats were orally administered XO (0, 5000 or 10000 ㎎/㎏). The changes of body weight and clinical signs were investigated for 14 days after treatments. No death and toxic effects were observed for 14 days. Soft stool and diarrhea appeared right after treatment for over dose and non-digestive feature of XO but these clinical signs disappeared on the next day. No significant changes in body weight and abnormal gross findings were observed in relation to XO. According to the results, XO has no special toxic effects and LD50 values of XO are above 10000 ㎎/㎏ in male and female rats.
The acute oral toxicity of organogermanium, Ge-132 was evaluated in rats and mice. The changes of body weight and clinical signs were observed for 14 days after the oral administration of Ge-132, from 0.31 g/kg up to 5 g/kg for SD rats and from 1.25 g/kg up to 5 g/kg for ICR mice. No death and toxic effects were observed for 14 days. The body weight of rats was significantly decreased 1 day after the administration in the maximum dosing group, but the decrease of body weight returned to control level 3 days after dosing. No significant changes in body weight were observed in mice. Autopsy revealed no abnormal gross findings related to Ge132. Therefore, Ge-132 has no special toxic effects up to 5 g/kg, and LD_(50) values of Ge-132 are above 5 g/kg in rats and mice.
Background : Pectin lyase-modified red ginseng extract (GS-E3D) is a newly developed ginsenoside Rd-enriched ginseng extract. This study was designed to investigate the acute oral and dermal toxicity of GS-E3D in rat.
Methods and Results : The acute oral toxic effects of GS-E3D in female SD rats were examined at dosages of 300 ㎎/㎏ and 2,000 ㎎/㎏. In acute dermal toxicity study, 500, 1,000 and 2,000 ㎎/㎏ of GS-E3D were applied onto the shaved skin of male and female SD rats. The weights of rats were recorded at 0, 1, 3, 7, and 14 days and clinical observation were checked once a day for a period of 14 days. All rats were scarified on 14th day and complete gross examination was conducted to detect any gross change of organs after necropsy. GS-E3D did not produce orally or dermally treatment-related clinical signs of toxicity or mortality in all rats during the 14-day observation period. The oral and dermal LD50 values of GS-E3D were over 2,000 ㎎/㎏ in rat. The oral and dermal administration of GS-E3D revealed no significant change in body weight and gross pathology examination compared to control group.
Conclusion : These results indicate that GS-E3D can be used as a food and cosmetic materials without critically adverse effect.