검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,683

        6.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for high-strength steel is rising due to its economic efficiency. Low-cycle fatigue (LCF) tests have been conducted to investigate the nonlinear behaviors of high-strength steel. Accurate material models must be used to obtain reliable results on seismic performance evaluation using numerical analyses. This study uses the combined hardening model to simulate the LCF behavior of high-strength steel. However, it is challenging and complex to determine material model parameters for specific high-strength steel because a highly nonlinear equation is used in the model, and several parameters need to be resolved. This study used the particle swarm algorithm (PSO) to determine the model parameters based on the LCF test data of HSA 650 steel. It is shown that the model with parameter values selected from the PSO accurately simulates the measured LCF curves.
        4,000원
        7.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.
        4,000원
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to assess and determine the optimal model for predicting the full bloom date of ‘Fuji’ apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of ‘Fuji’ apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.
        4,300원
        9.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
        4,000원
        10.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 지역 영역 기상 수치 예보 모델의 여러 수평 영역 및 수평 해상도에 따른 이상적인 열대저기압 의 진로와 베타자이어의 민감도를 조사하였다. 모델의 이상적인 초기 조건은 경험적인 함수로 생성된 3차원 축대칭 모 조 소용돌이와 허리케인 활동 시기의 평균 대기 조건으로 구성된다. 이때 모델 설정에 따른 이상적인 열대저기압의 변 화를 분석하기 위하여 배경 흐름은 제거되었다. 수치 모델의 수평 영역 및 수평 해상도에 따른 이상적인 열대저기압의 민감도 실험을 수행하기 위해, 지역 영역 수치 모델로서 W RF (Weather Research a nd F orecasting) 모델을 사용하였다. 모의된 열대저기압의 바람장으로부터 베타자이어를 추출하기 위해, DFS (Double-Fourier Series) 국지 영역 고차 필터 를 사용하였다. 모델의 수평 영역의 크기가 감소할수록 베타자이어의 구조와 강도가 약해졌으며, 이는 열대저기압 진로 의 차이를 발생시켰다. 수평 영역의 크기를 본 연구의 실험에서 가장 작은 영역인 3,000 km3,000 km로 설정하였을 경 우에 베타자이어 통풍류의 서진 성분이 크게 감소하였으며, 수평 영역을 더 넓게 설정한 실험들에 비해 열대저기압의 진로가 동쪽으로 편향되었다. 본 결과는 열대저기압과 관련된 바람장 전체를 포함하지 못할 정도로 매우 작은 수평 영 역을 사용할 경우, 열대저기압의 진로가 적절히 모의 될 수 없음을 시사한다. 반면, 5,000 km5,000 km와 6,000 km 6,000 km의 수평 영역에서는 그 민감도가 매우 작게 나타났다. 수평 해상도가 감소할수록 이상적인 열대저기압의 진 로는 매우 서쪽으로 편향되었다. 베타자이어의 크기와 강도도 수평 해상도가 감소할수록 크고 더 강하게 나타났다.
        5,700원
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to determine the anti-obesity effect of adding Wolfiporia extensa Ginns (W) to fermented pollack skin products in an obesity-induced animal model. The experimental groups were the normal diet group (C), high-fat diet group (HF), dried pollack skin (H1), fermented pollack skin (H2), and W of 0.1 (F2-WL), 0.3 (F2-WM), and 0.5 (F2), respectively. It was confirmed that adding W to fermented pollack skin reduced blood triglycerides, total cholesterol, and LDL levels, while increasing HDL levels. Wolfiporia extensa Ginns was effective in controlling weight and improving blood lipids in a dose-dependent manner. In histological analysis, findings of fatty liver induced by a high-fat diet were improved by the addition of H2 and W. Size and density of fat globules in the epididymis were decreased. In addition, the concentration of TNF-α was increased in the high-fat diet group, but decreased by the addition of fermented pollack skin and W. In conclusion, adding fermented dried pollack skin and Wolfiporia extensa Ginns was effective for weight control and blood lipid improvement. Thus, the use of by-products in functional foods is expected to have a high value in the future.
        4,300원
        12.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 부산신항에서 스크러버를 장착한 선박이 세정수를 배출하였을 때 인근 해역에 미치는 영향을 검토하기 위해 확산예측을 수행하였다. 세정수에 포함된 용존무기탄소(DIC)의 농도를 통제한 채로 세정수의 pH 조건별로 해역에 미치는 영향을 대조기 와 소조기로 나누어 평가하였다. 선박 1대에서 24시간 동안 세정수를 배출할 때, pH가 최대 0.076, 0.083 감소하였다. DIC의 경우 0.561mg/L, 0.612mg/L 증가하였다. 부산신항에 수용가능한 선박수인 24대를 전부 가정하여 실험하였을 경우 pH는 0.200, 0.545 감소하였고, DIC는 1.464mg/L, 3.629mg/L 증가하였다. 일반적으로 스크러버가 세정수를 처리하였을 때 pH 6.1인 것을 감안하여 선박 1대에서 pH 6.1인 조건으 로 24시간 동안 세정수를 배출하는 경우 우리나라 연근해의 연간 pH 변화량보다 약 33.7배 더 큰 폭으로 감소하는 것으로 계산되었다. 선 박이 24대일 경우에는 하루이상 표층의 성층화를 유발하고 수심 4m까지 영향을 주는 것으로 예측되었다.
        4,000원
        13.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하 고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산 량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀 (MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구 축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min- 1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU 는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능 을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.
        4,300원
        14.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
        4,000원
        19.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On pig farms, the highest mortality rate is observed among nursing piglets. To reduce this mortality rate, farmers need to carefully observe the piglets to prevent accidents such as being crushed and to maintain a proper body temperature. However, observing a large number of pigs individually can be challenging for farmers. Therefore, our aim was to detect the behavior of piglets and sows in real-time using deep learning models, such as YOLOv4-CSP and YOLOv7-E6E, that allow for real-time object detection. YOLOv4-CSP reduces computational cost by partitioning feature maps and utilizing Cross-stage Hierarchy to remove redundant gradient calculation. YOLOv7-E6E analyzes and controls gradient paths such that the weights of each layer learn diverse features. We detected standing, sitting, and lying behaviors in sows and lactating and starving behaviors in piglets, which indicate nursing behavior and movement to colder areas away from the group. We optimized the model parameters for the best object detection and improved reliability by acquiring data through experts. We conducted object detection for the five different behaviors. The YOLOv4-CSP model achieved an accuracy of 0.63 and mAP of 0.662, whereas the YOLOv7-E6E model showed an accuracy of 0.65 and mAP of 0.637. Therefore, based on mAP, which includes both class and localization performance, YOLOv4-CSP showed the superior performance. Such research is anticipated to be effectively utilized for the behavioral analysis of fattening pigs and in preventing piglet crushing in the future.
        4,000원
        20.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure’s safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
        4,000원
        1 2 3 4 5