검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 42

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent hightemperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the hightemperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the hightemperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al–Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.
        4,000원
        5.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.
        5,500원
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh- energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600oC.
        4,000원
        7.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.
        4,000원
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 머신러닝 기법을 토대로 15개 환경 변수를 활용하여 소나무재선충병의 위험지역 분포를 예측하였다. 연구는 최대 엔트로피 모델을 머신러닝 기법으로 활용하였고, 연구 지역은 경주이며 연구 기간은 2018∼2020년이다. 모델의 평가에는 AUC(area under the curve)를 이용하였다. 연구 지역에서 소나무재선충병의 감염목 핵심 분포 지역은 2018년 대비 2019년과 2020년에 각각 2.5배와 4.7배 확대되었다. 소나무재선충병의 감염목 분포 추정 모델의 AUC는 모든 해에 최소 0.86 이상이었다. 모델에서 가장 중요한 변수는 직전 해의 감염목 근접도 이었다. 지형과 도로와의 인접성, 목조건물 인접성, 5월 평균 기온도 중요한 변수이었다. 인간 활동과 매개충의 생장 환경이 소나무재선충병의 공간적 분포에 중요한 역할을 한다는 것을 의미한다. 나아가 연구의 결과는 감염목 분포 정보의 지속적인 구축과 공유가 소나무재선충병 예방을 위한 정책과 연구에 중요하다는 것을 시사한다.
        4,800원
        9.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000oC with no holding time have a tensile strength of over 1000 MPa.
        4,000원
        10.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-topowder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.
        4,000원
        11.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10−4 s−1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.
        4,000원
        12.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.
        4,500원
        13.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker’s hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.
        4,000원
        14.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young’s modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.
        4,000원
        15.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a new Co10Fe10Mn35Ni35Zn10 high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The Co10Fe10Mn35Ni35Zn10 HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The Co10Fe10Mn35Ni35Zn10 HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the Co10Fe10Mn35Ni35Zn10 HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at 900℃, the microstructure has an FCC single phase with an average grain size of 18 μm. Finally, the Co10Fe10Mn35Ni35Zn10 HEA has a compressive yield strength of 302 MPa.
        4,000원
        18.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Failure modes and effects analysis (FMEA) is a widely used engineering tool in the fields of the design of a product or a process to improve its quality or performance by prioritizing potential failure modes in terms of three risk factors―severity, occurrence, and detection. In a classical FMEA, the risk priority number is obtained by multiplying the three values in 10 score scales which are evaluated for the three risk factors. However, the drawbacks of the classical FMEA have been mentioned by many previous researchers. As a way to overcome these difficulties, this paper suggests the ELECTRE III that is a representative technique among outranking models. Furthermore, fuzzy linguistic variables are included to deal with ambiguous and imperfect evaluation process. In addition, when the importances for the three risk factors are obtained, the entropy method is applied. The numerical example which was previously studied by Kutlu and Ekmek‡ioğlu(2012), who suggested the fuzzy TOPSIS method along with fuzzy AHP, is also adopted so as to be compared with the results of their research. Finally, after comparing the results of this study with that of Kutlu and Ekmek‡ioğlu(2012), further possible researches are mentioned.
        4,000원
        19.
        2013.04 구독 인증기관·개인회원 무료
        생물 종 다양성 및 보존에 대한 필요성은 곤충과 같은 생물 개체의 정확하고 효율적인 인식 방법에 관심을 불러 일으켰다. 특히 스마트 폰과 같은 디지털 정보가전의 발달과 보급으로 인해 영상 매체를 이용한 곤충 종의 자동인식에 대해 많은 연구가 이루어지고 있다. 본 논문은 나비 영상 인식을 위해 가지 길이 유사성 엔트로피(Branch Length Similarity Entropy)를 이용한 특징 추출 방법을 제안한다. 제안한 특징 추출 방법은 나비의 윤곽으로부터 높은 곡률을 가진 특징점들을 추출한 다음 이들 사이를 네트워크로 구성하고 특징점 간의 길이 분포를 엔트로피로 표현한 것이다. 제안한 특징 추출 방법의 성능을 평가하고자 15종의 나비 영상을 대상으로 지도학습 기반 기계학습 방법인 베이지안 분류기, 인공 신경망 및 서포트 벡터 머신을 이용해 기존에 제시된 퓨리에 기술자 및 웨이블릿 기술자와 비교하였다.
        20.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
          The instance-based learning is a machine learning technique that has proven to be successful over a wide range of classification problems. Despite its high classification accuracy, however, it has a relatively high storage requirement and because it mus
        4,000원
        1 2 3