Evaluating the performance of asphalt concrete using CT scanning has become an essential area of research due to its potential to revolutionize the way we assess road materials. Traditional methods often require destructive sampling, which can damage infrastructure and offer limited insight into the material's internal structure. In contrast, CT scanning provides a non-destructive, highly detailed analysis of asphalt's internal features, such as air voids, aggregate distribution, and binder coverage, all of which are critical to its durability and performance. Additionally, the ability to create 3D models from CT scans allows for deeper insights into factors like void connectivity and aggregate bonding, which directly affect the lifespan of pavements. By combining CT imaging with advanced data processing techniques, such as deep learning, this research offers more accurate and reliable methods for optimizing asphalt mix designs, ultimately leading to longer-lasting roads, reduced maintenance costs, and more sustainable construction practices.
Organic-inorganic hybrid coating films have been used to increase the transmittance and enhance the physical properties of plastic substrates. Sol-gel organic-inorganic thin films were fabricated on polymethylmethacrylate (PMMA) substrates using a dip coater. Metal alkoxide precursor tetraethylsilicate (TEOS) and alkoxy silanes including decyltrimethoxysilane (DTMS), 3-glycidoxypropyltrimethoxysilane (GPTMS), phenyltrimethoxysilane (PTMS), 3-(trimethoxysilyl)propyl methacrylate (TMSPM) and vinyltrimethoxysilane (VTMS) were used to synthesize sol-gel hybrid coating solutions. Sol-gel synthesis was confirmed by the results of FT-IR. Cross-linking of the Si-O-Si network during synthesis of the sol-gel reaction was confirmed. The effects of each alkoxy silane on the coating film properties were investigated. All of the organicinorganic hybrid coatings showed improved transmittance of over 90 %. The surface hardness of all coating films on the PMMA substrate was measured to be 4H or higher and the average thickness of the coating films was measured to be about 500 nm. Notably, the TEOS/DTMS coating film showed excellent hydrophobic properties, of about 97°.
Volatile organic compounds (VOCs) can adversely affect human and plant health by generating secondary pollutants such as ozone and fine particulate matter, through photochemical reactions, necessitating systematic management. This study investigated the distribution characteristics of gaseous VOCs in ambient air, with a focus on interpreting data from a photochemical pollution perspective. This paper analyzed the presence and concentration distribution of VOCs in industrial areas, identifying toluene, m-xylene, p-xylene, and n-octane as the most frequently detected components. Particularly, toluene was found to significantly contribute to the formation of ozone and fine particulate matter, highlighting the need for stricter regulation of this compound. Although n-octane and styrene were present in relatively low concentrations overall, their significant contributions to ozone generation and secondary organic aerosol formation, respectively, emphasize their importance in air pollution management.
In order to overcome the limitations of linear vibration energy harvesters and those using mechanical plucking, magnetic plucking vibration energy harvesters (MVEs) have garnered significant interest. This paper presents parametric studies aimed at proposing design guidelines for MVEs and compares two magnetic force models that describe interactions between two permanent magnets. A mathematical model describing the energy harvester is employed, followed by the introduction of two magnetic force models: an analytic model and an inverse square model. Subsequently, numerical simulations are conducted to investigate dynamic characteristics of MVEs, analyzing results in terms of tip displacement, voltage output, and harvested energy. Parametric studies vary the distance between magnets, the speed of the external magnet, and the beam shape. Results indicate that reducing the distance between magnets enhances energy harvesting effectiveness. An optimal velocity for the external magnet is observed, and studies on beam shape suggest greater energy harvesting when the shape favors deflection.
As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 °C and a low thermal expansion coefficient (11.46×ppm/°C), respectively.
본 연구는 폴리케톤(PK) 지지체를 이용한 유기용매 역삼투(OSRO) 분리막 제조를 목적으로 하였다. 비용매 유도 상분리 방법(NIPS)을 통해 PK 지지체를 제작하였고, PK 지지체 위에 polyamide layer를 계면 중합하여 thin-film composite (TFC) 형태로 OSRO 분리막을 완성하였다. 이후 OSRO 분리막의 표면과 단면 구조 및 표면의 화학적 구조를 분석하였고 수 투과도와 염 제거율은 각각 약 1.28 LMH/bar와 99.0%의 결과를 얻었다. 또한 OSRO 분리막의 polyamide layer는 유기용매 침지 1일 동안 매우 안정적이었고, 단일 유기용매 투과도 경향성은 유기용매 나노여과(OSN) 분리막의 투과도 모델과 일치하 였다. OSRO 분리막의 MWCO는 MeOH 상에서 240 g/mol이었다. OSRO 분리막의 MeOH-toluene 혼합용액에 대한 투과도 와 separation factor는 상용 OSN 분리막보다 각각 200%와 60%의 높은 결과를 얻었다.
우리나라의 도농복합시는 1995년 지방자치제도가 시행되면서 등장한 도시 유형으로, 도시와 농촌의 균형발전을 목적으로 시행되고 있다. 본 연구는 우리나라 54개 도농복합시를 대상으로 인구, 사회, 경제, 인프라의 4개 영역, 14개 지표로 구성된 도시역량 지표를 종합지수화하여 2010년과 2020년의 도농복합시 도시역량의 공간 분포 패턴 및 변화를 실증적으로 탐색한다. 주요 연구 결과는 다음과 같다. 첫째, 인구가 많은 도시일수록 도시역량이 높은 경향이 나타났다. 둘째, 2010년부터 2020년까지 전반적으로 도농복합시 도시역량 지수의 범위가 축소되는 경향이 나타났다. 셋째, 세 집단으로 유형화한 도농복합시의 도시역량 의 차이를 비교한 결과, 유의미한 차이가 확인되었다.
The purpose of this study is to analyze the correlation between ecotoxicity and water quality items using Daphnia magna in public sewage treatment plant process and to obtain operational data to control ecotoxicity through research on removal efficiency. The average value of ecotoxicity was 1.39 TU in the influent, 1.50 TU in the grit chamber, and 0.84 TU in the primary settling tank and it was found that most organic matters, nitrogen, and phosphorus were removed through biological treatment in the bioreactor. Using Pearson’s correlation analysis, the positive correlation was confirmed in the order of ecotoxicity and water quality items TOC, BOD, T-N, NH3-N, SS, EC, and Cu. As a result of conducting a multilinear regression analysis with items representing positive correlation as independent variables, the regression model was found to be statistically significant, and the explanatory power of the regression model was about 81.6%. TOC was found to have a significant effect on ecotoxicity with B=0.009 (p<.001) and Cu with B=16.670 (p<.001), and since the B sign is positive (+), an increase of 1 in TOC increases the value of ecotoxicity by 0.009 and an increase in Cu by 1 increases the value of ecotoxicity by 16.670. TOC (β=0.789, p<.001) and Cu (β=0.209, p<.001) were found to have a significant positive effect on ecotoxicity. TOC and Cu have a great effect on ecotoxicity in the sewage treatment plant process, and it is judged that TOC and Cu should be considered preferentially and controlled in order to efficiently control ecotoxicity.
The objective of this study is to analyze the indoor air quality of multi-use facilities using an IoT-based monitoring and control system. Thise study aims to identify effective management strategies and propose policy improvements. This research focused on 50 multi-use facilities, including daycare centers, medical centers, and libraries. Data on PM10, PM2.5, CO2, temperature, and humidity were collected 24 hours a day from June 2019 to April 2020. The analysis included variations in indoor air quality by season, hour, and day of the week (including both weekdays and weekends). Additionally, ways to utilize IoT monitoring systems using big data were propsed. The reliability analysis of the IoT monitoring network showed an accuracy of 81.0% for PM10 and 76.1% for PM2.5. Indoor air quality varied significantly by season, with higher particulate matter levels in winter and spring, and slightly higher levels on weekends compared to weekdays. There was a positive correlation found between outdoor and indoor pollutant levels. Indoor air quality management in multi-use facilities requires season-specific strategies, particularly during the winter and spring. Furhtermore, enhanced management is necessary during weekends due to higher pollutant levels.
Daemadeung, located in the estuary of the Nakdong River, is formed by sand dunes and possesses well-developed intertidal flats. This study aimed to investigate the habitat of benthic microalgae, photosynthetic pigments, and photosynthetic efficiency in the intertidal flats of Daemadeung from January to December 2011. The inorganic nitrogen content in the sediment pore water was primarily composed of ammonium, while nitrate+nitrite was dominant in the upper layer water. The concentration of chlorophyll a and fucoxanthin in the sediment surface was significantly higher than the mean of all the sediment layer. The average Fv/Fm of benthic microalgae during the entire survey period was 0.52±0.03, with the highest value (0.61±0.08) observed in February. The rETRmax showed a seasonal trend, being high from spring to early autumn (April to October) and low from winter to early spring (January to March, November, December), with the highest value (153.05±2.30 μmol electrons m-2 s-1) in July and the lowest (38.49±5.17 μmol electrons m-2 s-1) in January. The average Fv/Fm of diurnal microalgae was 0.48±0.03, with the highest value (0.61±0.08) observed at noon. The rETRmax showed a highest peak at noon (54.24±11.35 μmol electrons m-2 s-1) and reached its lowest point at 16:00 (26.17±4.75 μmol electrons m-2 s-1). These findings suggest that the productivity of benthic microalgae varies significantly depending on the survey time and sediment depth. Therefore, to quantify the productivity of benthic microalgae using Diving-PAM, surveys should be conducted based on tidal conditions, and simultaneous pigment analysis of sediment layers should also be performed.
반응성 에시드 클로라이드인 트리멜리틱 안하이드라이드 클로라이드를 이용한 2-에티닐피리딘의 무촉매중 합을 통하여 트리멜리틱 부분을 측쇄로 갖는 이온성 공액구조 고분자를 합성하였다. 2-에티닐피리딘과 트리멜리틱 안하이드라이드 클로라이드를 1:1 몰비로 DMF 용매에서 반응시킨 결과 해당 공액구조 고분자를 높은 수율로 합성 할 수 있었다. 첫 번째 반응 단계에서 만들어진 단량체인 N-치환-2-에티닐피리디늄 염은 별도의 촉매 사용없이도 중합반응이 잘 진행되었다. NMR, IR, UV-visible 등의 분광분석기를 사용하여 합성 고분자의 구조를 분석한 결과 설계한 치환기를 갖는 공액구조 고분자가 합성되었음을 확인할 수 있었다. 합성 고분자의 전기-광학적 특성과 전기 화학적 특성을 측정하였다. 본 고분자는 자외선 영역뿐만 아니라 가시광선 영역에서 500 nm까지 넓은 흡수 피크 를 보였으며 PL 최대값은 539 nm에서 나타났다.
본 연구는 Lactobacillus acidophilus KCTC 3164 균주에 의해 발효된 깻잎 발효 추출물 (5%, 10%, 15%, 및 20% w/v)을 기능성 첨가제로 사용하여 깻잎 발효물이 첨가된 아이스크림을 제조 함이 목적이다. 깻잎 발효물이 첨가된 아이스크림의 물리·화학적 특성(색상, 점도, pH, 총 산도, 녹는 속 도, 오버런) 및 항산화 활성을 평가하였다. 깻잎 발효물 첨가량이 증가할수록 아이스크림의 색상에 영향 을 주었으며, 아이스크림의 녹는 속도도 증가하였다. 이에 반해 점도는 점차적으로 감소하는 경향을 나 타내었다. 깻잎 발효물 첨가량이 높을수록 오버런은 점진적으로 증가하였고, pH는 유의하게 감소하였으 며, 총 산도는 증가하였다. 깻잎 발효물이 첨가된 아이스크림의 DPPH 라디컬 소거능과 총 폴리페놀 함 량은 깻잎 발효물 첨가량이 많아질수록 유의적으로 증가하는 것으로 나타났다. 본 연구결과 10% 깻잎 발효추출물을 함유한 아이스크림 실험군이 높은 오버런, 낮은 녹는 속도, 원하는 점도, 높은 DPPH 라디 컬 소거능과 총 폴리페놀 함량을 보여 기능성 아이스크림으로의 잠재력이 있는 것을 알 수 있었다.