Car accidents require continuous access to new technologies in the field of maintenance that cannot be achieved by textbook theory alone due to the nature of body repair without the same damage and repair conditions. In the case of vehicle repairs due to unexpected accidents, it is difficult to satisfy the needs of the vehicle owner, so in this study, it is possible to restore them to their original state with improved technology like the vehicle owner. Better maintenance technologies have been explored: complete replacement of side quarter panels, partial replacement and partial modification of side quarter panels, as well as tangible and intangible effects such as not applying depreciation rates due to traffic accidents, preventing environmental pollution and maximizing owner satisfaction.
In this study, the failure characteristic of the center floor of a front-wheel drive vehicle was investigated according to material. UHSS, Al6061-T6, CFRP, and CFRP-Al were used as materials. As the analysis condition, a fixed support was applied to the rear surface of the center floor and a forced displacement of 2 mm/sec was applied to the front surface. As the result, when comparing with the equivalent stress and strain energy according to the material, it was found that UHSS, Al6061-T6, CFRP, and CFRP-Al were higher in the order. Also, when comparing with the equivalent strain due to the material, it was shown that the equivalent strain was high in the order of Al6061-T6, UHSS, CFRP and CFRP-Al. As for the damage characteristic of the center floor according to the material, it was found that the highest structural stability was obtained when UHSS was used. However, it was found that it was good to utilize Al6061-T6 in order to acquire the structural stability along with the structure with the lighter weight.
An aluminium sandwich sheet is the composite adhered by rolling two aluminum panels to one plastic core. If it has the same bending stiffness as an steel sheets, it is about 65% lighter than steel sheet and 30% lighter than aluminum sheet. In present study, we intend to develop application technologies of an aluminum sandwich sheet for auto body panels from selecting composed materials of aluminium sandwich sheets to fabricating prototype. For this study, for the application of a light sandwich sheet to an automotive hood part, ribbing process so called, hemming for which joined between an inner and an outer panel was introduced. From these results, it was found that the sandwich sheet could improve the weight and maintain the flexural rigidity simultaneously comparing to the steel sheet.
The structural performance of a vehicle can be evaluated by the static and dynamic structural analyses which predict the amounts of deformation & stiffness, and the static analysis should be done first. Another important aspect to be considered in the design process is crashworthiness, because a structurally sturdy vehicle body may be overdesigned with the excessive strength and durability standards. The ideal condition of a body structure is to absorb the impact load at a certain level of local deformation, to distribute the load to each structure adequately, and to prevent the excessive stress concentration and deformation. This paper is the result of the consideration of vibration characteristic for structure stiffness estimation of automotive body through the finite element modeling.
The design and analysis of the rigidity and deformation of the vehicle body are basically performed in two forms. First, the relative response of components separated from a parent system or connected as a model of a subsystem is examined. Second, the entire model is used to consider the absolute response of the components to the externally transmitted vehicle service load, which is defined as that of the entire vehicle body system. In this paper, we propose the finite element modeling for the structural design of the car body. First, we will explain the simple finite element modeling of the car body, explain the method of formulating the stiffness of the joint, and finally the shell element. The proposed finite element modeling is proposed. By applying the proposal, it is possible to propose finite element modeling of all medium and large passenger cars less than 3 tons.
The structural performance of a vehicle can be evaluated by the static and dynamic structural analyses which predict the amount of deformation, stiffness. And the static analysis should be done first. Another important aspect to be considered in the design process is crashworthiness, because a structurally sturdy vehicle body may be overdesigned with excessive strength and durability standards. The ideal condition of a body structure is to absorb impact load at a certain level of local deformation, to distribute the load to each structure adequately, and to prevent excessive stress concentration and deformation. This paper is the result of the consideration of automotive body, bending and torsional stiffness for structure stiffness estimation of automotive body through finite element modeling.
In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.
Vehicle crash analysis a lot of time and manpower in preprocessing for analysis rather than analysis in analytical studies of the situation that is being committed. In this studies involving conflict with an existing automation system of the body is mainly optimized for a particular field, and researchers think that is an inconvenience that can be used in stone until a comprehensive analysis of the bodywork of each study. Therefore, it is very important to development of automotive system for vehicle crash analysis, the research related studies were carried out. In this study, vehicle crash analysis is performed against that can be used for multiple and effectively utilized by system based meshing in an aim to reduce the time and resource that by developing an automotive system. The results of the study, it was possible to construct an automated system the more time consuming mesh generation for vehicle crash analysis.
In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.
Recently, the automatic laser-piercing has become a subject of growing research area in the hydroforming of car body and robotic fields. Generally, the laser-cutting with 6-DOF robot system has 3D error due to a gear backlash and inaccurate calibration method between sensor and cutting-tool. The objective of this article is to study the automatic laser-cutting for the micro-hole piercing of engine cradles. The development of redundant micro-control module and laser vision sensor contributes to the implementation of precise laser cutting. To obtain higher a performance of control module, the calibration algorithm between cutting-tool and laser sensor is required. The implementation of this methodology will be describe. The optimal path generation for a good quality of cutting section is also explained in detail. The experimental results demonstrate the successful operation in the automatic micro-hole piercing. It shows a validity of the micro-motion mechanism and robot‘s calibration algorithm in laser sensor.
이 논문은 자동차 차체 조립과정에서, 품질관리의 일환으로써, 비접촉 자동측정시스템을 이용하여 검사해야 하는 수많은 비독립적인 검사점을 다변량분산분석과 주성분분석을 이용하여 효율적으로 검사점을 감소시키는 방법을 설명하고 있다. 이 연구의 목적은 다변량분산분석, 주성분 분석의 개념과 이러한 기법들을 산업체 제조분야에서 응용하는 방법을 설명하여 독자의 사례 응용 이해를 돕는데 있으며, 또한 특히 주성분분석을 이용하여 수 많은 비독립적인 검사점을 어떻게 유
자동차 경량화를 지향하는 초경량차체 기술 중에서 합체박판기술을 이용한 수 있는 일련의 최적설계 기법을 제안하고 기존의 자동차 도어 내판에 적용하여 경량화를 수행하였다. 먼저, 내판에 부착되는 보강재를 제거한 후 취약해진 강성을 보강하기 위한 파트 선정을 위해 위상 최적설계를 수행하여 대략적인 파트 분포를 결정하였다. 그 다음 상세설계 단계로서 각 파트의 두께는 치수 최적설계를 이용하여 정하고, 형상 최적설계로 최종 용접선을 결정하였다. 이러한 일련의 최적화를 위해 상용 소프트웨어인 GENESIS가 사용되었다.
This study is resource planning of painting lines in Korean motor company using simulation techniques. The painting lines have bottle neck problems that is considered production capacity, number of lines and so on. The alternative solutions is decided by the result of simulation techniques. This Paper is focused on resource planning using simulation techniques.
본 연구에서는 ANSYS와 ABAQUS 상용 유한요소 코드를 이용하여 궤도차량의 정적.동적 해석을 충격하중과 주행하중에 대해서 수행하였다. 궤도차량이 충격하중을 받을 때 최대 동적 Von Mises응력은 상판의 빔보강재와 레이스링사이에서 발생하였으며 응력수준은 390-450MPa이다. 정하중에 대한 동하중수 1.6을 고려했을 경우 동적 해석과 동적하중계수가 포함된 정하중 해석은 유사한 결과를 보이고 있다. 과도응력은 주로 레이싱링 주위에서 발생하고 있다. 주행하중의 경우 최대응력은 로드휠 유기압 현가장치 #1번에서 450MPa정도이며, 정적해석과 비선형 해석의 결과가 유사하다.
In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.