Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.
The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.
Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.
본 논문에서는 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동을 분석하였다. 기본적인 폭발하중을 받는 패널 실험 데이터, 축하중과 폭발하중을 받는 철근콘크리트 기둥 실험데이터를 이용하여 비선형 동적해석 모델링을 검증하였다. 축하중의 적용에 있어서 Autodyn은 동적해석만을 위한 프로그램이기 때문에 축하중과 같은 정적 하중에 대한 초기 응력 상태를 모사하는 해석 절차를 제시하였다. 축하중비 0%~70% 구간과 TNT 등가량에 의존한 환산거리 1.1~2.0에 해당하는 매개변수를 선정하여 총 80개의 비선형 동적 유한요소해석을 진행하였다. 축하중비와 환산거리의 변화를 통해 손상정도와 최대 변위 및 회전각으로 구조 거동을 비 교 분석한 결과로 원거리 폭발하중에서 축하중을 받는 기둥의 강성 증가로 최대 변위가 감소한다. 결과적으로 축하중비 10%~30%, 30%~50%, 50% 이상의 영역 3가지로 구조적 거동 분류가 가능함에 따라 내폭 설계 모델 개발에 활용될 수 있을 것으로 보인다.
The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.
In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.
초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 수평변위 제어를 위해 근래에 아웃 리거 구조시스템과 메가 구조시스템을 횡력저항시스템으로 사용한 초고층 건물이 증가하고 있다. 또한, 부등축소로 인한 구조적 문 제를 해결하기 위해 부등축소량 예측과 예측결과를 통한 시공단계에서의 보정방법이 연구되어 왔으나 부등축소에 대한 횡력저항시 스템의 영향 비교는 드문 편이다. 따라서, 본 논문에서는 수평변위 제어를 위해 아웃리거 구조시스템과 메가 구조시스템을 사용한 60 층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 통한 부등축소를 비교하고 그 영향을 분석하고자 한다. 또한, 부 등축소는 비구조요소의 파손 및 구조요소에 부가하중을 유발하기도 하며 부등축소가 야기한 문제는 초고층 건물에서 중요한 부재를 손상시킬 수 있으므로 각 횡력저항시스템별로 수직부재의 부등축소에 대한 영향을 분석하였다.
A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.
The methodology classifying structural types of concrete buildings in the existing seismic fragility functions is too simple to estimate the fragility of existing residential buildings and neighborhood living facilities, especially those below five stories. Their structural types are dependent on information contained in the building register such as main use, total floor area, story, permission date, and first story floor area of the individual building. All of this information is not considered for classifying types in the existing functions; therefore, the goal of this study was to suggest a methodology that classifies structural types of concrete buildings by utilizing such information. The results of this study showed that the suggested methodology can classify structural types better than the existing methodology. Nevertheless, there is still a need to simplify the methodology because fragility estimation demands quickness rather than accuracy.
한본 연구에서는, 철근콘크리트 보 구조물의 동결융해에 따른 장기거동특성 및 최종 파괴형태를 비교 분석하고자 하였다. 철근콘크리트 보 시험체와 재료 시험체를 제작하여, 동결융해 챔버를 이용하여 동결과 융해를 반복적으로 수행하였다. 동결융해를 위하여 기존의 시험법을 참고하여 철근콘크리트 구조물에 대한 시험을 수행 하였다. 동결융해에 따른 콘크리트의 재 료특성 변화와 철근콘크리트 보 구조물의 거동특성 변화를 통하여 동결융해에 대한 영향을 평가하였다. 제안된 동결융해 시험법을 통하여 콘크리트 공시체의 압축강도가 약 19%감소하였다. 철근콘크리트 보 시험체의 경우, 콘크리트의 표면 강도가 동결 융해에 의하여 감소되어 사인장 균열이 발생하여, 재료적 강도 감소에 의한 구조물의 성능이 감소함을 확인하였다. 또한, 사인장 균열이 발생한 동결융해 시험체의 에너지 소산능력이 동결융해를 거치지 않은 시험체와 비교하여 적게 발생하였다.
최근 건설업계에서 설계시의 수량산출 및 예정공사비의 정확도에 대한 요구가 높아지고 있으며, 설계변경 시에 즉각적인 물량의 변화와 공사비의 변화를 파악하는 것이 중요한 이슈가 되고 있다. 또한, 수량과 공사비와 관련한 각종 소송들이 빈번하게 발생하면서 이를 해결하기 위한 방안으로 BIM기반의 물량산출 및 견적이 대안으로 등장하였다. 그러나 현재 BIM기반의 물량산출 및 견적은 2D 기반의 기존 방식보다 활용이 원활하지 못하다. 이는 물량산출 및 내역에 대한 국가적인 표준이나 기준이 마련되어 있지 못하고, 산출 작업자의 경험이 중요한 요소로 작용하기 때문이다. 하지만, 이는 견적의 관점이고 설계자의 관점에서 BIM을 이용한 즉각적이고 비 교적 정확도가 우수한 수량과 공사비의 파악이 예산에 맞는 설계를 진행하기 위하여 필요하다. 본 연구에서는 서울시 OO타운 생활관의 철근콘크리트 구조의 콘크리트, 철근, 거푸집의 수량을 사례로 2D기반의 설계수량과 BIM을 기반으로 한 계획설계, 실시설계 시의 수량과 실제 시공수량을 비교·분석하고 차이가 발생하는 원인을 분석하여 향후 설계자 관점에서 BIM기반의 수량산출에 도움이 되고자 하였다.
In this study, natural period formular is presented for a RC shear wall structure with H-, T-, and L-shaped wall sections. The natural period formular proposed by Goel and Chopra and adopted in ASCE 7-10 was modified by using the ratio of the flange and web wall area. The natural periods of structures with H-shaped wall were numerically obtained, the results indicated that the ASCE 7-10 could not consider the natural period variation according to the length of the flange wall, but the proposed formula could do. Especially, ASCE 7-10 estimated much longer periods than eigenvalue analysis, and this implies that conservative seismic design is difficult. The periods by eigenvalue analysis exist between the upper and lower bounds given by the proposed formula, and conservative design is possible by using the proposed lower bound value. In order to verity the effectiveness of the proposed method, actual residential buildings with various types of flange walls are considered. Ambient vibration tests, eigenvalue analyses, and nonlinear dynamic analyses were conducted and the periods were compared with the values by ASCE 7-10 and the proposed formula. The results showed that the proposed formula could estimate more accurately the periods than ASCE 7-10.
When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically.
Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. T
he experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
본 연구에서는 철근콘크리트 건물에 대한 유전자 알고리즘 기반의 최적구조설계기법을 제시하고자 한다. 목적함수는 구조 물의 비용과 이산화탄소 배출량을 동시에 각각 최소화하는 것이다. 비용 및 인산화탄소 배출량은 구조설계안에서 얻을 수 있는 단면치수, 부재길이, 재료강도, 철근량 등과 같은 설계정보를 통해 계산한다. 즉, 구조물의 물량을 기초로 하여 비용과 이산화탄소 배출량을 평가한다. 재료의 운반, 시공 및 건물 운영 단계에서 발생하는 비용 및 이산화탄소 배출량은 본 연구에 서 제외한다. 제약조건은 철근콘크리트 건물을 구성하는 기둥과 보 부재의 강도조건과 층간변위조건이 고려된다. 제약조건 을 평가하기 위해 OpenSees를 활용한 선형정적해석이 수행된다. 제약조건을 만족시키면서 목적함수에 대해 최소의 값을 제 시하는 설계안을 찾기 위해 유전자 알고리즘이 사용된다. 제시한 알고리즘의 적용성을 검증하기 위해 4층 철근콘크리트 모 멘트 골조 예제에 제시하는 기법을 적용하여 검증한다.