검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 초등학생들의 􍾧깊이 있는 학습􍾨을 위하여 AI 코스웨어를 활용한 개념기반 탐구수업의 통 합 모델을 교육공학적으로 개발하는데 목적이 있다. 이를 위하여 개념기반 교육과정 및 수업(CBCI)과 AI 코스웨어에 대한 문헌연구로 이론적 토대를 마련하고, AI 코스웨어 활용 개념기반 탐구수업의 통합 모델을 설계 및 개발하였다. 연구 결과는 다음과 같다. 첫째, AI 코스웨어 활용 개념기반 탐구수업의 모델을 진단분석, 전략설정, 수업설계(개념질문-과제탐색-과제해결-개념성찰), 전이촉진으로 명료화 하였다. 둘째, 패러다임 변화 이론에 따라, 통합 모델의 혁신 가능성을 평가하고 새로운 교육 패러다임 의 실질적인 적용 가능성을 통찰하였다. 이를 토대로 사례분석부터 모형구상, 모형숙의, 모형수정 과정 을 반복하며 통합 모델을 정교화하였다. 마지막으로, AI 코스웨어 활용 개념기반 탐구수업 연구에 참 여한 자문그룹과 워킹그룹을 심층 인터뷰하여 통합 모델의 설계-실행-생성 과정을 검토하고 교육과 정 및 수업의 적용과 실행을 위한 시사점을 도출하였다. 결론적으로, 본 연구는 AI 코스웨어와 개념기 반 탐구수업의 통합적인 방법론의 효과성을 확인하였으며, 향후 연구와 개발에 대한 지속적인 노력이 필요하다는 점을 시사한다.
        6,700원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
        4,000원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate how the English speaking ability of Korean EFL college students was affected by their interactions with Talk-to-ChatGPT while taking an ‘English Interview’ class. Thirty pieces of English conversation scripts with thirty chatbot conversations created by five students were collected for analysis. Two online text analysis programs, Quillbot including word counter and grammar checker and T.E.R.A.(Text Ease and Readability Assessor), were used for data analysis. The findings of data analysis revealed that 1) The average length of the sentences and words spoken by the participants has increased through English speaking practice using Talk-to-ChatGPT, and 2) There was no significant change in text ease and readability, and coherence of students’ utterances through English speaking practice using a chatbot while there were differences depending on their English proficiency levels. 3) Students A, B, and D, who had relatively low levels of English proficiency, showed a slight increase in syntactic accuracy and semantic clarity in their English interview practice. Based on the study findings, pedagogical implications for the effective use of AI-based apps or programs in English speaking classes were presented.
        6,300원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 관광 관련 서비스 분야에 필요한 특수 목적 중국어(CSP) 교육과정 개 발을 위한 첫 단계로 AI 데이터 기반으로 구축된 구어체 병렬 코퍼스에서 CSP 어휘 리스트를 선정하여 용어색인과 어휘다발(n-gram)등을 분석하였다. 어휘리스트 어휘 규모는 토큰 수 총 304, 228개와 타입 수 17, 286개로 나타났으며, 어휘 누적 증가율 을 분석하면 2-Gram과 3-Gram의 어휘다발이 가장 많았고, 실무 현장에서 가장 많 이 활용되고 있음을 알 수 있었다. 본 연구에서 구축된 특수 목적 관광 중국어 어휘 리스트는 실제 교육 자료로 제공하여 관광 중국어 학습자와 교수자에게 실용적으로 사용될 수 있을 것이라 기대한다.
        5,700원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Text-to-3D 생성형 AI 기술을 활용하여 메타버스 방 꾸미기 게임의 프로토타 입을 설계하고 구현하고자 하였다. <Roblox>와 <Minecraft>와 같은 가상 현실 기반의 메타버 스 게임은 사용자를 단순한 플레이어에서 창작자인 크리에이터로 발전할 수 있게 하였고 이러 한 재미 요소는 대중적인 인기에 이바지하였다. 생성형 AI는 데이터와 패턴을 기반으로 다양 한 형태의 미디어 콘텐츠를 쉽게 생성할 수 있으며, 게임 개발에도 마찬가지로 유용하다. 이러 한 생성형 AI를 통한 콘텐츠 제작은 시간과 비용을 절약할 뿐만 아니라 결과적으로 콘텐츠의 품질을 높이고 다양성을 확보할 수 있다. 본 연구에서는 언리얼 엔진의 네트워크 프레임워크 를 활용한 리슨 서버(Listen-Server) 방식으로 방 꾸미기 게임을 설계 및 구현하였다. 이 게 임의 핵심 시스템은 메타버스에서 사용자가 쉽게 생성형 AI로 3D 모델을 생성하고, 자신의 방 에 배치할 수 있게 하는 것이다. 본 연구를 통해 코딩 기초 이해는 물론 좀 더 쉬운 방법으로 3D 오브젝트 생성을 통해 사용자가 원하는 메타버스 플랫폼 제작을 가능하게 하며 이러한 과 정은 사용자뿐만 아니라 동시에 창작자의 역할로 이용자의 주체성, 창의성, 의사소통 능력 등 을 향상할 가능성을 찾고자 한다. 그뿐만 아니라 기본적인 코딩 학습을 이해함으로써 사용자 의 창작 활동에 기회를 확장할 뿐만 아니라 메타버스 콘텐츠 개발에 이바지하고자 한다.
        4,300원
        12.
        2024.03 구독 인증기관·개인회원 무료
        최근, 국토교통부에서 시행한 “국가 보행교통 실태조사”로 인해 보행안전과 보행환경에 대한 중요성이 증가하고 있으며, 전반적으로 대로에서는 보행환경이 양호하나 생활도로에서는 보도가 미설치되거나 보도폭이 협소하여 보행환경이 미흡하고 보행 만족도도 낮은 것으며 생활도로의 약 34%가 유효보도폭 기준을 충족하지 못하고 있다고 조사되었다. 국가 주요 사회간접자본(SOC)인 도로, 교량, 터 널, 공공건물, 환승센터 등에 비하여 상대적으로 보행공간을 대상으로한 정보화 속도가 늦어 정보화 연구개발에 대한 추진이 시급한 실정이다. 이에 정부에서도 국가공간정보정책 기본계획에 따른 국가공간정보정책 시행계획이 확정되어 신산업 기반으로서의 역할과 안전한 시설관리를 위한 디지털 트윈 관련 기술개발 등에 투자를 확대하고, 디지털 트윈 등의 기반 정보인 고정밀 공간정보 생산 등 에 중점적으로 투자하고 있다. 현재 한국건설기술연구원, 서울시, 경기도 등에서 활용하고 있는 조사장비(PES, KRISS)는 도로포장(차 도)에서 상태 모니터링을 진행하고 있으나 이와 같은 장비들은 고가의 장비들로 실질적으로 사용하기에는 어려움이 있다. 또한, 보행 도로에서는 상태 모니터링을 수집할 장비가 없기 때문에, 보행 공간 경사, 노면 상태 등을 측정ㆍ수집하는 방법은 인력에게 의존해왔 다. 또한, 현재 보행자도로에 대한 서비스수준 산정 방식은 한국도로용량편람(2013)의 보행자시설편에서 제공하고 있는 산정 방식으로 도로용량편람에서 제시하는 보행자도로의 분석 방법을 적용하여 서비스수준을 산출할 경우, 차량과 동일한 교통량-속도-밀도 관계에 의존하여 산출하기 때문에 현실적인 보행자도로의 서비스수준을 반영하지 못하고 있는 실정이다. 이러한 문제로 인해 보행공간에 대 한 이용자의 안전 및 편의성에 대한 연구가 미흡한 상황이다. 따라서, 본 연구는 모바일매핑시스템(Mobile Mapping System)과 인공지 능(AI), 무인비행장치(Drone)를 활용한 보행공간 상태 모니터링 시스템 구축 방안을 제시하고자 한다.
        15.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.
        4,000원
        16.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study compares AI PengTalk’s assessments of Korean children’s pronunciation with the assessments of Korean teachers. Sixty Korean sixth-graders participated as assessees, and four Korean elementary teachers participated as assessors. Both PengTalk and the teachers rated the children’s production of 10 English sentences on a five-point scale. They focused on segmentals, stress-rhythm, intonation, and speech rate. The findings were as follows: Firstly, PengTalk evaluated the children’s pronunciation in the four elements significantly lower than the teachers across all English proficiency levels. Secondly, teachers’ ratings of the students aligned more closely with their pre-evaluated English proficiency levels than the AI PengTalk’s assessments. The teachers rated students at the upper level significantly higher than those at the intermediate level, who were, in turn, assessed significantly higher than those at the lower level in all four elements. Furthermore, AI PengTalk and the teachers differed in the mean order of the four elements, particularly in segmentals. Based on the results of this study, suggestions were made for the development and implementation of AI-based English programs.
        6,100원
        17.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        딥러닝(DL: Deep Learning)의 발전으로 오늘날 다양한 분야에서 AI 모델이 만들어지고 사용되고 있다. 오늘날, 컴퓨터의 발전과 DL 알고리즘의 발전에 의해, DL 기반 AI 모델은 수많은 데이터를 학습하고 스스로 규칙을 찾을 수 있다. DeepMind의 Alphago는 학습 데이터 만으로 게임의 규칙을 스스로 판단하고 고수준의 게임 플 레이를 할 수 있다는 가능성을 보여준다. 이런 다양한 DL 알고리즘이 게임 분야에 적용되고 있지만, 스포츠 게임 같이 팀의 전술과 개인 플레이가 공존하는 분야에서는 단일 AI 모델만으로 성공적인 플레이를 이끌어 내기에는 한계가 존재한다. 오늘날, 고품질의 스포츠 게임은 쉽게 접할 수 있다. 하지만, 게임 AI 연구자들이 이런 고품질의 스포츠 게임에 맞는 AI 모델을 개발하기 위해서는 게임 코드 소스를 받거나 게임 회사에서 테 스트용 시뮬레이터를 제공해줘야만 할 수 있다. 게임 AI 연구자들이 활발한 스포츠 게임 분야의 AI 모델을 개 발하기 위해서는 스포츠 게임의 규칙과 특징이 반영되고 접근하기 쉬운 테스트 환경(Test Environment)이 필요 하다. 본 논문에서는 팀의 전술과 개인 플레이가 중요한 스포츠 게임 분야에서 AI 모델을 만들고 테스트할 수 있는 규칙기반 축구 게임 프레임워크를 제안한다.
        4,000원
        18.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Governments around the world are enacting laws mandating explainable traceability when using AI(Artificial Intelligence) to solve real-world problems. HAI(Human-Centric Artificial Intelligence) is an approach that induces human decision-making through Human-AI collaboration. This research presents a case study that implements the Human-AI collaboration to achieve explainable traceability in governmental data analysis. The Human-AI collaboration explored in this study performs AI inferences for generating labels, followed by AI interpretation to make results more explainable and traceable. The study utilized an example dataset from the Ministry of Oceans and Fisheries to reproduce the Human-AI collaboration process used in actual policy-making, in which the Ministry of Science and ICT utilized R&D PIE(R&D Platform for Investment and Evaluation) to build a government investment portfolio.
        4,000원
        1 2 3