검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 82

        1.
        2025.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the synthesis of bimetallic Cu-Au nanotubes (NTs) and Cu@Au core-shell nanowires (NWs) for use as anti-oxidative electrodes. The fabrication involved two key approaches: galvanic replacement to produce Cu-Au NTs and the physical deposition of Au to form Cu@Au core-shell NWs. The galvanic replacement process generated hollow NTs through the Kirkendall effect, driven by the unequal diffusion rates of Cu and Au during the redox reaction. In contrast, the physical deposition of Au, facilitated by fast reduction kinetics using L-ascorbic acid, enabled the formation of a Au shell encapsulating the Cu NWs, preserving their structural integrity. Morphological and structural analyses confirmed the successful formation of both nanostructures. While the Cu-Au NTs exhibited hollow interiors and increased dimensions, the Cu@Au NWs displayed a solid core-shell morphology with minimal diameter increase. Electrical conductivity and thermal stability tests revealed the superior performance of the Cu@Au NWs. The sheet resistance of Cu@Au NWs remained as low as 4 Ω sq-1 and showed exceptional thermal stability, with minimal resistance variation (R/Ro ~1.36) even after 36 h at 120 °C under ambient conditions. In contrast, the Cu-Au NTs suffered rapid oxidation and structural instability. The physical deposition approach holds significant promise for the development of robust, low-resistance electrodes for long-term applications in harsh environments.
        4,000원
        2.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gold nanoparticles (Au NPs) decorated carbon nanofibers (CNFs) have been prepared by an electrospinning approach and then carbonized. The prepared Au-CNFs were employed to modifying a screen printed electrode (SPE) for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Au NPs are uniformly dispersed on carbon nanofibers were confirmed by the structure and morphological studies. The modified electrodes were tested in cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) to characterize their electrochemical responses. Compared to bare SPE, the Au-CNFs/SPE had a better sensing response to AA, DA, and UA. The electrochemical oxidation signal of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 280 mV, 159 mV and 439 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separation in DPV studies are 290 mV, 166 mV and 456 mV. The Au-CNFs/SPE has a wide linear response of AA, DA and UA in DPV analysis over the range of 5–40 μM ( R2 = 0.9984), 2–16 μM ( R2 = 0.9962) and 2–16 μM ( R2 = 0.9983) with corresponding detection limits of 0.9 μM, 0.4 μM and 0.3 μM at S/N = 3, respectively. The developed modified SPE based sensor exhibits excellent reproducibility, stability, and repeatability. The excellent sensing response of Au-CNFs could reveal to a promising approach in electrochemical sensor.
        5,100원
        3.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g− 1 h− 1, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.
        4,500원
        5.
        2022.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.
        4,000원
        6.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into–OH and –H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.
        4,000원
        8.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research examines the Ấu học ngũ ngôn thi (幼學五言詩: Pentasyllabic Poetry for Primary Learning) written in Sinographs and Nôm script in Vietnam as a case study of the textbooks in pre-20th century primary education. This paper claims, based on Chinese-origined East Asian Sinological primers of the Shentong Shi (神童詩: Progidy Poetry), the Xunmeng Youxue Shi (訓蒙幼學詩 Initial Teaching Poetry for Primary Learning) and the Zhuangyuan Shi (狀元詩: Poetry for the First-ranked Metropolitan Laureate), a certain Vietnamese scholar reconstructed and rewrote these textbooks to become a new textbook of Vietnam with several newly-composed poems. The new textbook was translated from Literary Sinitic into Vietnamese in both prose and poetry, to adapt to the educational context of two languages (Chinese and Vietnamese) and two scripts (Sinographs and Nôm script) in Vietnam. This reconstruction and translation, on one hand, made Vietnamese primary education integrate with the Sinosphere in East Asia, on the other hand defined Vietnamese own characteristics via the localization of this textbook’s formation, language, and script.
        9,200원
        9.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. Fire safety for the practical application of the composite beam has also been verified through the fire resistance tests and the heat transfer analyses. In this study 2-points bending tests were performed on the four specimens already tested for fire resistance to evaluate the residual bending strength of AU composite beam after fire accident. The same bending test was performed on the one fresh specimen having the same section and span of the specimens for practically comparative study.
        4,000원
        12.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for SiO2@Au core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.
        4,000원
        13.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently various composite beams in which concrete is filled in the U-shaped steel plate have been developed for saving story height and reducing construction period. Due to the high flexural stiffness and strength, they are widely being used for the building with large loads and long spans. The semi-slim AU composite beam has proven to take highly improved stability compared to the existing composite beams, because it consists of the closed steel section by attaching cap-type shear connectors to the upper side of U-shaped steel plate. In this study the finite element analyses were performed to evaluate the safety of the AU composite beam with unconsolidated concrete which were sustained through the closed steel section during the construction phase. The analyses were performed on the two types of cross section applied to the fabrication of AU composite beams, and the results were compared to the those of 2-point bending tests. In addition, the flexural performance according to the space of intermittent cap-type shear connectors and the location of reinforcing steel bars for compression was comparatively investigated. Through the results of analytical studies, it is preferable to adopt the yield moment of AU composite beam for evaluating the safety in the construction phase, and to limit the space of intermittent shear connectors to 400 mm or less for the construction load.
        4,000원
        14.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.
        4,000원
        15.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, composite beams have been developed in which concrete is filled in a U-shaped steel plate for saving height of story. And due to high flexural stiffness and bending strength, it is widely applied in the field where high load and long span are required. The AU composite beam was improved the instability of the existing beams because it makes a closed section by attaching a cover type shear connection to the existing U - shaped composite beam with open upper section. In this study, AU composite beam resisted by composite-section during the using phase was evaluated the safety through the finite element analysis. The analysis is performed on the five specimens of AU composite beams according to applied deck-system and compared with the results of 2 - point bending test. As a result of the analysis, behavior of beam was shown by integrated composite section. And the evaluation of flexible capacity was p
        4,000원
        16.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Gas detection is necessary for various reasons, including the prevention of gas leakages and the creation of necessary environmental conditions. Among the gas detection methods, leakage of gas can be confirmed using materials that undergo color changes that are easily distinguished by the naked eye. Metal nanoparticles (NPs) experience variations in their absorption wavelengths under the localized surface plasmon effect (LSPR) with mechanical stresses, which change the distance between NPs. In this study, we attempted to detect the presence of gas utilizing the LSPR-related color change of a chain of Au NPs. The assembly of Au NPs, arranged in a chain shape, experienced a color change from dark blue to purple with a change in the distance between the NPs by applying a physical force, i.e., compression, stretching, and gas pressure. As the force of compression and the degree of stretching increased, the absorption wavelength shifted from doublet peaks at 650 and 550 nm to a singlet peak at 550 nm. Further, applying gas pressure caused an identical color change. With this result, we propose a method that could be applied to all gases that require detection based on gas pressure.
        4,000원
        18.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The SLIM AU composite beam consists of U-shaped steel plate, A-shaped steel cap and infilled concrete. The bottom steel plate acts as tension bars, and the top steel cap takes roles of shear connector and compression bars in the conventional reinforced concrete section. In this paper the shear strength of this composite beam with closed steel section has been evaluated through the concentrated loading shear experiments. Test results under the symmetrical and asymmetrical loading conditions were compared with the predicted values based on the KBC 2016. The composite beam showed the greater shear strength capacities than those of the theoretical evaluation.
        4,000원
        19.
        2017.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> 70 °C) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-Ag- In alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.
        4,000원
        20.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Through density functional theory calculations, to provide insight into the origins of the catalytic activity of Au nanoparticles (NPs) toward oxidation reactions, we have scrutinized the oxygen adsorption chemistry of 9 types of small unsupported Au NPs of around 1 nm in size (Au13, Au19, Au20, Au25, Au38, and Au55) looking at several factors (size, shape, and coordination number). We found that these NPs, except for the icosahedral Au13, do not strongly bind to O2 molecules. Energetically most feasible O2 adsorption that potentially provides high CO oxidation activity is observed in the icosahedral Au13, our smallest Au NP. In spite of the chemical inertness of bulk Au, the structural fluxionality of such very small Au NP enables strong O2 adsorption. Our results can support recent experimental findings that the exceptional catalytic activity of Au NPs comes from very small Au species consisting of around 10 atoms each.
        4,000원
        1 2 3 4 5